Nuprl Lemma : combination_wf
∀[T:Type]. ∀[n:ℤ].  (Combination(n;T) ∈ Type)
Proof
Definitions occuring in Statement : 
combination: Combination(n;T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
combination: Combination(n;T)
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
list_wf, 
and_wf, 
no_repeats_wf, 
equal_wf, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbZ{}].    (Combination(n;T)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-05_56_27
Last ObjectModification:
2015_12_27-PM-00_23_39
Theory : general
Home
Index