Nuprl Lemma : combinations_wf_int

[n:ℕ]. ∀[m:ℤ].  (C(n;m) ∈ ℤ)


Proof




Definitions occuring in Statement :  combinations: C(n;m) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T combinations: C(n;m)
Lemmas referenced :  combinations_aux_wf_int nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbZ{}].    (C(n;m)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-05_58_22
Last ObjectModification: 2015_12_27-PM-00_22_38

Theory : general


Home Index