Nuprl Lemma : combinations_wf_int
∀[n:ℕ]. ∀[m:ℤ].  (C(n;m) ∈ ℤ)
Proof
Definitions occuring in Statement : 
combinations: C(n;m)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
combinations: C(n;m)
Lemmas referenced : 
combinations_aux_wf_int, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbZ{}].    (C(n;m)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_15-PM-05_58_22
Last ObjectModification:
2015_12_27-PM-00_22_38
Theory : general
Home
Index