Nuprl Lemma : combinations_aux_wf_int

[n:ℕ]. ∀[b,m:ℤ].  (combinations_aux(b;n;m) ∈ ℤ)


Proof




Definitions occuring in Statement :  combinations_aux: combinations_aux(b;n;m) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: combinations_aux: combinations_aux(b;n;m) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: bfalse: ff uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b has-value: (a)↓
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int value-type-has-value int-value-type nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry callbyvalueReduce sqleReflexivity because_Cache unionElimination equalityElimination productElimination promote_hyp instantiate cumulativity multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[b,m:\mBbbZ{}].    (combinations\_aux(b;n;m)  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_21-PM-08_08_37
Last ObjectModification: 2017_07_26-PM-05_44_20

Theory : general


Home Index