Nuprl Lemma : combinations-formula
∀[n,m:ℕ].  ((C(n;m) * (m - n)!) = (m)! ∈ ℤ supposing n ≤ m ∧ (C(n;m) = if n ≤z m then (m)! ÷ (m - n)! else 0 fi  ∈ ℤ))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
combinations: C(n;m)
, 
fact: (n)!
, 
nat: ℕ
, 
le_int: i ≤z j
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
divide: n ÷ m
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
lelt: i ≤ j < k
, 
div_nrel: Div(a;n;q)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
combinations-step, 
istype-void, 
istype-le, 
minus-zero, 
one-mul, 
fact_wf, 
decidable__le, 
intformnot_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
add-zero, 
istype-nat, 
subtract-1-ge-0, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
mul-associates, 
minus-one-mul, 
add-commutes, 
fact_unroll_1, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
combinations_wf_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_rel_self, 
iff_weakening_equal, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
zero-add, 
int_formual_prop_imp_lemma, 
intformimplies_wf, 
decidable__equal_int, 
bnot_wf, 
less_than_wf, 
lt_int_wf, 
assert_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
equal-wf-base, 
le_int_wf, 
uiff_transitivity, 
assert_of_le_int, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
satisfiable-full-omega-tt, 
combinations_wf, 
mul_bounds_1a, 
div_unique2, 
nat_plus_properties, 
decidable__lt, 
false_wf, 
multiply-is-int-iff, 
zero_ann_a, 
istype-assert, 
not_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
addEquality, 
unionElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
equalityElimination, 
productElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
minusEquality, 
imageElimination, 
universeEquality, 
intEquality, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
isectIsTypeImplies, 
independent_pairEquality, 
isect_memberEquality_alt, 
isect_memberFormation_alt, 
closedConclusion, 
baseApply, 
computeAll, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
inrFormation_alt, 
functionIsType, 
sqequalBase
Latex:
\mforall{}[n,m:\mBbbN{}].
    ((C(n;m)  *  (m  -  n)!)  =  (m)!  supposing  n  \mleq{}  m
    \mwedge{}  (C(n;m)  =  if  n  \mleq{}z  m  then  (m)!  \mdiv{}  (m  -  n)!  else  0  fi  ))
Date html generated:
2020_05_20-AM-08_15_43
Last ObjectModification:
2020_01_01-PM-02_21_53
Theory : general
Home
Index