Nuprl Lemma : combinations-formula

[n,m:ℕ].  ((C(n;m) (m n)!) (m)! ∈ ℤ supposing n ≤ m ∧ (C(n;m) if n ≤then (m)! ÷ (m n)! else fi  ∈ ℤ))


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  combinations: C(n;m) fact: (n)! nat: le_int: i ≤j ifthenelse: if then else fi  uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q divide: n ÷ m multiply: m subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B nat_plus: + bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  squash: T true: True iff: ⇐⇒ Q rev_implies:  Q top: Top cand: c∧ B so_apply: x[s] so_lambda: λ2x.t[x] lelt: i ≤ j < k div_nrel: Div(a;n;q)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than combinations-step istype-void istype-le minus-zero one-mul fact_wf decidable__le intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma add-zero istype-nat subtract-1-ge-0 eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int mul-associates minus-one-mul add-commutes fact_unroll_1 equal_wf squash_wf true_wf istype-universe combinations_wf_int itermMultiply_wf int_term_value_mul_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_rel_self iff_weakening_equal minus-add minus-minus add-associates add-swap zero-add int_formual_prop_imp_lemma intformimplies_wf decidable__equal_int bnot_wf less_than_wf lt_int_wf assert_wf int_subtype_base le_wf set_subtype_base equal-wf-base le_int_wf uiff_transitivity assert_of_le_int assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int satisfiable-full-omega-tt combinations_wf mul_bounds_1a div_unique2 nat_plus_properties decidable__lt false_wf multiply-is-int-iff zero_ann_a istype-assert not_wf iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination axiomEquality functionIsTypeImplies inhabitedIsType dependent_set_memberEquality_alt addEquality unionElimination applyEquality equalityTransitivity equalitySymmetry because_Cache equalityElimination productElimination equalityIstype promote_hyp instantiate cumulativity minusEquality imageElimination universeEquality intEquality multiplyEquality imageMemberEquality baseClosed isectIsTypeImplies independent_pairEquality isect_memberEquality_alt isect_memberFormation_alt closedConclusion baseApply computeAll voidEquality isect_memberEquality lambdaEquality dependent_pairFormation dependent_set_memberEquality applyLambdaEquality pointwiseFunctionality inrFormation_alt functionIsType sqequalBase

Latex:
\mforall{}[n,m:\mBbbN{}].
    ((C(n;m)  *  (m  -  n)!)  =  (m)!  supposing  n  \mleq{}  m
    \mwedge{}  (C(n;m)  =  if  n  \mleq{}z  m  then  (m)!  \mdiv{}  (m  -  n)!  else  0  fi  ))



Date html generated: 2020_05_20-AM-08_15_43
Last ObjectModification: 2020_01_01-PM-02_21_53

Theory : general


Home Index