Step
*
of Lemma
det-swap-cols
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[i,j:ℕn]. |matrix-swap-cols(M;i;j)| = (-r |M|) ∈ |r| supposing ¬(i = j ∈ ℤ)
BY
{ (Auto
THEN (Assert |M|
= Σ{r} f ∈ map(λf.((i, j) o f);permutations-list(n)). let k = Π(r) 0
≤ i
< n
M[i,f i] in
if permutation-sign(n;f)=1 then k else (-r k)
∈ |r| BY
(Unfold `matrix-det` 0
THEN (InstLemma `rng_lsum_functionality_wrt_permutation` [⌜r⌝;⌜{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ⌝]⋅ THENA Auto\000C)
THEN BHyp -1
THEN Auto))
THEN (RWO "rng_lsum_map" (-1) THENA Auto)
THEN Reduce -1
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)
THEN (RWO "rng_minus_lsum" 0 THENA Auto)
THEN Unfold `matrix-det` 0
THEN EqCDA) }
1
.....subterm..... T:t
3:n
1. r : CRng
2. n : ℕ
3. M : Matrix(n;n;r)
4. i : ℕn
5. j : ℕn
6. ¬(i = j ∈ ℤ)
7. f : ℕn →⟶ ℕn
⊢ let k = Π(r) 0
≤ i@0
< n
matrix-swap-cols(M;i;j)[i@0,f i@0] in
if permutation-sign(n;f)=1 then k else (-r k)
= (-r let k = Π(r) 0 ≤ i@0 < n. M[i@0,(i, j) (f i@0)] in if permutation-sign(n;(i, j) o f)=1 then k else (-r k))
∈ |r|
Latex:
Latex:
\mforall{}[r:CRng]. \mforall{}[n:\mBbbN{}]. \mforall{}[M:Matrix(n;n;r)]. \mforall{}[i,j:\mBbbN{}n].
|matrix-swap-cols(M;i;j)| = (-r |M|) supposing \mneg{}(i = j)
By
Latex:
(Auto
THEN (Assert |M|
= \mSigma{}\{r\} f \mmember{} map(\mlambda{}f.((i, j) o f);permutations-list(n)). let k = \mPi{}(r) 0
\mleq{} i
< n
M[i,f i] in
if permutation-sign(n;f)=1
then k
else (-r k) BY
(Unfold `matrix-det` 0
THEN (InstLemma `rng\_lsum\_functionality\_wrt\_permutation` [\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}\{p:\mBbbN{}n {}\mrightarrow{} \mBbbN{}n|
Inj(\mBbbN{}n;\mBbbN{}n;p)\} \mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN BHyp -1
THEN Auto))
THEN (RWO "rng\_lsum\_map" (-1) THENA Auto)
THEN Reduce -1
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)
THEN (RWO "rng\_minus\_lsum" 0 THENA Auto)
THEN Unfold `matrix-det` 0
THEN EqCDA)
Home
Index