Nuprl Lemma : det-swap-cols

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[i,j:ℕn].  |matrix-swap-cols(M;i;j)| (-r |M|) ∈ |r| supposing ¬(i j ∈ ℤ)


Proof




Definitions occuring in Statement :  matrix-det: |M| matrix-swap-cols: matrix-swap-cols(M;i;j) matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a natural_number: $n int: equal: t ∈ T crng: CRng rng_minus: -r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a matrix-det: |M| crng: CRng nat: prop: so_lambda: λ2x.t[x] rng: Rng subtype_rel: A ⊆B false: False implies:  Q not: ¬A so_apply: x[s] injection: A →⟶ B and: P ∧ Q all: x:A. B[x] squash: T true: True guard: {T} iff: ⇐⇒ Q compose: g rev_implies:  Q int_seg: {i..j-} matrix-ap: M[i,j] matrix-swap-cols: matrix-swap-cols(M;i;j) mx: matrix(M[x; y]) flip: (i, j) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  let: let le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  rng_lsum_functionality_wrt_permutation int_seg_wf inject_wf let_wf rng_car_wf permutation-sign_wf equal-wf-base int_subtype_base rng_minus_wf rng_prod_wf matrix-ap_wf permutations-list_wf list_wf injection_wf no_repeats_wf all_wf l_member_wf map_wf compose_wf-injection flip-injection flip_wf flip-permutes-permutations-list2 equal_wf squash_wf true_wf rng_lsum_map compose_wf subtype_rel_self iff_weakening_equal matrix-det_wf matrix-swap-cols_wf rng_minus_lsum subtype_rel_set subtype_rel_list rng_lsum_wf rng_wf not_wf matrix_wf nat_wf crng_wf rng_sig_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int permutation-sign-compose sign-flip set_wf absval_cases false_wf le_wf rng_minus_minus and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis setEquality functionEquality natural_numberEquality because_Cache sqequalRule lambdaEquality int_eqEquality applyEquality intEquality baseApply closedConclusion baseClosed productEquality functionExtensionality dependent_set_memberEquality independent_isectElimination dependent_functionElimination imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality instantiate productElimination independent_functionElimination isect_memberEquality axiomEquality lambdaFormation unionElimination equalityElimination int_eqReduceTrueSq dependent_pairFormation promote_hyp cumulativity voidElimination int_eqReduceFalseSq equalityUniverse levelHypothesis multiplyEquality independent_pairFormation applyLambdaEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[i,j:\mBbbN{}n].
    |matrix-swap-cols(M;i;j)|  =  (-r  |M|)  supposing  \mneg{}(i  =  j)



Date html generated: 2018_05_21-PM-09_36_03
Last ObjectModification: 2018_05_19-PM-04_24_53

Theory : matrices


Home Index