Nuprl Lemma : absval_cases

x:ℤ. ∀[y:ℕ]. uiff(|x| y ∈ ℤ;(x y ∈ ℤ) ∨ (x (-y) ∈ ℤ))


Proof




Definitions occuring in Statement :  absval: |i| nat: uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: subtype_rel: A ⊆B nat: implies:  Q decidable: Dec(P) or: P ∨ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False guard: {T} sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal-wf-base-T int_subtype_base or_wf nat_wf absval_unfold2 decidable__lt top_wf less_than_wf subtype_base_sq minus-minus equal_wf squash_wf true_wf absval_pos iff_weakening_equal absval_sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation independent_pairFormation cut introduction axiomEquality hypothesis thin rename extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality setElimination because_Cache minusEquality independent_functionElimination dependent_functionElimination natural_numberEquality unionElimination lessCases sqequalAxiom isect_memberEquality voidElimination voidEquality imageMemberEquality imageElimination productElimination inlFormation inrFormation instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry lambdaEquality universeEquality

Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}[y:\mBbbN{}].  uiff(|x|  =  y;(x  =  y)  \mvee{}  (x  =  (-y)))



Date html generated: 2017_04_14-AM-07_17_26
Last ObjectModification: 2017_02_27-PM-02_52_03

Theory : arithmetic


Home Index