Nuprl Lemma : matrix-det_wf
∀[r:Rng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].  (|M| ∈ |r|)
Proof
Definitions occuring in Statement : 
matrix-det: |M|
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
so_apply: x[s]
, 
rng: Rng
, 
subtype_rel: A ⊆r B
, 
injection: A →⟶ B
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
let: let, 
matrix-det: |M|
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
nat_wf, 
matrix_wf, 
l_member_wf, 
all_wf, 
no_repeats_wf, 
list_wf, 
permutations-list_wf, 
rng_minus_wf, 
matrix-ap_wf, 
rng_prod_wf, 
permutation-sign_wf, 
int_seg_wf, 
injection_wf, 
rng_lsum_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
productEquality, 
setEquality, 
applyEquality, 
int_eqEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].    (|M|  \mmember{}  |r|)
Date html generated:
2018_05_21-PM-09_35_31
Last ObjectModification:
2017_12_11-PM-00_57_16
Theory : matrices
Home
Index