Nuprl Lemma : matrix-ap_wf

[n,m:ℤ]. ∀[r:RngSig]. ∀[i:ℕn]. ∀[j:ℕm]. ∀[M:Matrix(n;m;r)].  (M[i,j] ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-ap: M[i,j] matrix: Matrix(n;m;r) int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n int: rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  matrix-ap: M[i,j] member: t ∈ T uall: [x:A]. B[x] matrix: Matrix(n;m;r)
Lemmas referenced :  rng_sig_wf rng_car_wf int_seg_wf
Rules used in proof :  intEquality because_Cache isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality functionExtensionality applyEquality cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[r:RngSig].  \mforall{}[i:\mBbbN{}n].  \mforall{}[j:\mBbbN{}m].  \mforall{}[M:Matrix(n;m;r)].    (M[i,j]  \mmember{}  |r|)



Date html generated: 2018_05_21-PM-09_34_03
Last ObjectModification: 2017_12_11-PM-00_29_19

Theory : matrices


Home Index