Nuprl Lemma : matrix-ap_wf
∀[n,m:ℤ]. ∀[r:RngSig]. ∀[i:ℕn]. ∀[j:ℕm]. ∀[M:Matrix(n;m;r)].  (M[i,j] ∈ |r|)
Proof
Definitions occuring in Statement : 
matrix-ap: M[i,j]
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
matrix-ap: M[i,j]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
matrix: Matrix(n;m;r)
Lemmas referenced : 
rng_sig_wf, 
rng_car_wf, 
int_seg_wf
Rules used in proof : 
intEquality, 
because_Cache, 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[r:RngSig].  \mforall{}[i:\mBbbN{}n].  \mforall{}[j:\mBbbN{}m].  \mforall{}[M:Matrix(n;m;r)].    (M[i,j]  \mmember{}  |r|)
Date html generated:
2018_05_21-PM-09_34_03
Last ObjectModification:
2017_12_11-PM-00_29_19
Theory : matrices
Home
Index