Nuprl Lemma : flip-permutes-permutations-list2

n:ℕ. ∀i,j:ℕn.  permutation({p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ;permutations-list(n);map(λf.((i, j) f);permutations-list(n)))


Proof




Definitions occuring in Statement :  permutations-list: permutations-list(n) permutation: permutation(T;L1;L2) flip: (i, j) map: map(f;as) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: all: x:A. B[x] set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: prop: injection: A →⟶ B guard: {T} subtype_rel: A ⊆B implies:  Q squash: T biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) uimplies: supposing a compose: g lelt: i ≤ j < k int_seg: {i..j-} ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_stable: SqStable(P) true: True
Lemmas referenced :  permutation-of-permutations-list inject_wf int_seg_wf compose_wf-injection flip-injection flip_wf subtype_rel_self istype-nat compose_wf inject-compose equal_wf squash_wf true_wf istype-universe int_seg_properties nat_properties decidable__le istype-le istype-less_than full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma flip_twice sq_stable__inject
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality lambdaEquality_alt isectElimination natural_numberEquality setElimination rename hypothesis because_Cache functionIsType inhabitedIsType closedConclusion dependent_set_memberEquality_alt universeIsType applyEquality sqequalRule setEquality functionEquality setIsType independent_functionElimination equalityIstype applyLambdaEquality imageMemberEquality baseClosed imageElimination independent_pairFormation independent_isectElimination hyp_replacement equalitySymmetry equalityTransitivity instantiate universeEquality functionExtensionality_alt productElimination productIsType unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.
    permutation(\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ;permutations-list(n);
                            map(\mlambda{}f.((i,  j)  o  f);permutations-list(n)))



Date html generated: 2019_10_15-AM-11_22_10
Last ObjectModification: 2018_11_27-AM-00_30_58

Theory : general


Home Index