Nuprl Lemma : permutation-of-permutations-list
∀n:ℕ. ∀f:{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)}  ⟶ {p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} .
  (Bij({p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} {p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} f)
  
⇒ permutation({p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} permutations-list(n);map(f;permutations-list(n))))
Proof
Definitions occuring in Statement : 
permutations-list: permutations-list(n)
, 
permutation: permutation(T;L1;L2)
, 
map: map(f;as)
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
injection: A →⟶ B
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
map-is-permutation-on-list-of-all, 
int_seg_wf, 
inject_wf, 
permutations-list_wf, 
list_wf, 
injection_wf, 
no_repeats_wf, 
all_wf, 
l_member_wf, 
set_wf, 
sq_stable__no_repeats, 
equal_wf, 
biject_wf, 
nat_wf, 
sq_stable__and, 
sq_stable__all, 
sq_stable__l_member, 
decidable__equal_injection, 
decidable__equal_int_seg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
productEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
isect_memberEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}    {}\mrightarrow{}  \{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  .
    (Bij(\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ;\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ;f)
    {}\mRightarrow{}  permutation(\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ;permutations-list(n);map(f;permutations-list(n))))
Date html generated:
2018_05_21-PM-08_22_28
Last ObjectModification:
2018_05_19-PM-04_56_56
Theory : general
Home
Index