Nuprl Lemma : map-is-permutation-on-list-of-all

[T:Type]
  ∀f:T ⟶ T. (Bij(T;T;f)  (∀as:T List. ((no_repeats(T;as) ∧ (∀t:T. (t ∈ as)))  permutation(T;as;map(f;as)))))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) no_repeats: no_repeats(T;l) l_member: (x ∈ l) map: map(f;as) list: List biject: Bij(A;B;f) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q prop: iff: ⇐⇒ Q member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x] uall: [x:A]. B[x] exists: x:A. B[x] surject: Surj(A;B;f) biject: Bij(A;B;f) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  uimplies: supposing a nat: cand: c∧ B l_member: (x ∈ l) true: True squash: T lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B inject: Inj(A;B;f)
Lemmas referenced :  biject_wf list_wf all_wf no_repeats_wf l_member_wf map_wf permutation-when-no_repeats int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties select_wf equal_wf length_wf less_than_wf map-length iff_weakening_equal true_wf squash_wf lelt_wf top_wf subtype_rel_list select-map set_wf subtype_rel_dep_function no_repeats_map
Rules used in proof :  universeEquality functionEquality lambdaEquality sqequalRule productEquality because_Cache independent_pairFormation independent_functionElimination hypothesis applyEquality functionExtensionality cumulativity dependent_functionElimination hypothesisEquality isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution voidEquality voidElimination isect_memberEquality intEquality int_eqEquality approximateComputation unionElimination natural_numberEquality independent_isectElimination rename setElimination promote_hyp dependent_pairFormation baseClosed imageMemberEquality equalitySymmetry equalityTransitivity imageElimination dependent_set_memberEquality setEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        (Bij(T;T;f)
        {}\mRightarrow{}  (\mforall{}as:T  List.  ((no\_repeats(T;as)  \mwedge{}  (\mforall{}t:T.  (t  \mmember{}  as)))  {}\mRightarrow{}  permutation(T;as;map(f;as)))))



Date html generated: 2018_05_21-PM-00_44_09
Last ObjectModification: 2017_12_11-AM-10_52_34

Theory : list_1


Home Index