Nuprl Lemma : map-is-permutation-on-list-of-all
∀[T:Type]
  ∀f:T ⟶ T. (Bij(T;T;f) 
⇒ (∀as:T List. ((no_repeats(T;as) ∧ (∀t:T. (t ∈ as))) 
⇒ permutation(T;as;map(f;as)))))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
surject: Surj(A;B;f)
, 
biject: Bij(A;B;f)
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
nat: ℕ
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
, 
true: True
, 
squash: ↓T
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
inject: Inj(A;B;f)
Lemmas referenced : 
biject_wf, 
list_wf, 
all_wf, 
no_repeats_wf, 
l_member_wf, 
map_wf, 
permutation-when-no_repeats, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
select_wf, 
equal_wf, 
length_wf, 
less_than_wf, 
map-length, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
lelt_wf, 
top_wf, 
subtype_rel_list, 
select-map, 
set_wf, 
subtype_rel_dep_function, 
no_repeats_map
Rules used in proof : 
universeEquality, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
productEquality, 
because_Cache, 
independent_pairFormation, 
independent_functionElimination, 
hypothesis, 
applyEquality, 
functionExtensionality, 
cumulativity, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
rename, 
setElimination, 
promote_hyp, 
dependent_pairFormation, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
dependent_set_memberEquality, 
setEquality
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        (Bij(T;T;f)
        {}\mRightarrow{}  (\mforall{}as:T  List.  ((no\_repeats(T;as)  \mwedge{}  (\mforall{}t:T.  (t  \mmember{}  as)))  {}\mRightarrow{}  permutation(T;as;map(f;as)))))
Date html generated:
2018_05_21-PM-00_44_09
Last ObjectModification:
2017_12_11-AM-10_52_34
Theory : list_1
Home
Index