Step
*
of Lemma
map-is-permutation-on-list-of-all
∀[T:Type]
  ∀f:T ⟶ T. (Bij(T;T;f) 
⇒ (∀as:T List. ((no_repeats(T;as) ∧ (∀t:T. (t ∈ as))) 
⇒ permutation(T;as;map(f;as)))))
BY
{ (Auto THEN BLemma `permutation-when-no_repeats` THEN Auto) }
1
1. [T] : Type
2. f : T ⟶ T
3. Bij(T;T;f)
4. as : T List
5. no_repeats(T;as)
6. ∀t:T. (t ∈ as)
7. x : T
8. (x ∈ as)
⊢ (x ∈ map(f;as))
2
1. [T] : Type
2. f : T ⟶ T
3. Bij(T;T;f)
4. as : T List
5. no_repeats(T;as)
6. ∀t:T. (t ∈ as)
⊢ no_repeats(T;map(f;as))
Latex:
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        (Bij(T;T;f)
        {}\mRightarrow{}  (\mforall{}as:T  List.  ((no\_repeats(T;as)  \mwedge{}  (\mforall{}t:T.  (t  \mmember{}  as)))  {}\mRightarrow{}  permutation(T;as;map(f;as)))))
By
Latex:
(Auto  THEN  BLemma  `permutation-when-no\_repeats`  THEN  Auto)
Home
Index