Nuprl Lemma : sign-flip

[n:ℕ]. ∀[u,v:ℕn].  permutation-sign(n;(u, v)) (-1) ∈ ℤ supposing ¬(u v ∈ ℤ)


Proof




Definitions occuring in Statement :  permutation-sign: permutation-sign(n;f) flip: (i, j) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  int_seg: {i..j-} subtype_rel: A ⊆B true: True compose: g squash: T uimplies: supposing a prop: nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  not_wf permutation-sign-id int_subtype_base equal-wf-base flip_wf nat_wf permutation-sign_wf true_wf squash_wf equal_wf inject_wf int_seg_wf identity-injection permutation-sign-flip
Rules used in proof :  minusEquality closedConclusion baseApply setEquality baseClosed imageMemberEquality functionEquality intEquality universeEquality equalityTransitivity imageElimination sqequalRule equalitySymmetry hyp_replacement independent_isectElimination applyEquality functionExtensionality because_Cache lambdaEquality dependent_set_memberEquality rename setElimination natural_numberEquality hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[u,v:\mBbbN{}n].    permutation-sign(n;(u,  v))  =  (-1)  supposing  \mneg{}(u  =  v)



Date html generated: 2018_05_21-PM-00_59_01
Last ObjectModification: 2017_12_10-PM-11_26_58

Theory : num_thy_1


Home Index