Nuprl Lemma : rng_minus_lsum

r:Rng. ∀A:Type. ∀as:A List. ∀f:A ⟶ |r|.  ((-r Σ{r} x ∈ as. f[x]) = Σ{r} x ∈ as. (-r f[x]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] list: List so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_minus: -r rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] rng: Rng so_apply: x[s] implies:  Q top: Top squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  list_induction all_wf rng_car_wf equal_wf rng_minus_wf rng_lsum_wf list_wf rng_lsum_nil_lemma squash_wf true_wf rng_minus_zero rng_zero_wf iff_weakening_equal rng_lsum_cons_lemma infix_ap_wf rng_plus_wf rng_minus_over_plus rng_plus_comm rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity setElimination rename hypothesis applyEquality because_Cache functionExtensionality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination

Latex:
\mforall{}r:Rng.  \mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}f:A  {}\mrightarrow{}  |r|.    ((-r  \mSigma{}\{r\}  x  \mmember{}  as.  f[x])  =  \mSigma{}\{r\}  x  \mmember{}  as.  (-r  f[x]))



Date html generated: 2018_05_21-PM-09_32_45
Last ObjectModification: 2017_12_11-PM-03_43_27

Theory : matrices


Home Index