Nuprl Lemma : rng_lsum_map
∀[r:Rng]. ∀[A,B:Type]. ∀[g:A ⟶ B].  ∀f:B ⟶ |r|. ∀as:A List.  (Σ{r} x ∈ map(g;as). f[x] = Σ{r} x ∈ as. f[g x] ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
infix_ap: x f y
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
rng_plus_wf, 
and_wf, 
rng_lsum_cons_lemma, 
map_cons_lemma, 
rng_zero_wf, 
rng_lsum_nil_lemma, 
map_nil_lemma, 
list_wf, 
map_wf, 
rng_lsum_wf, 
rng_car_wf, 
equal_wf, 
list_induction
Rules used in proof : 
universeEquality, 
axiomEquality, 
functionEquality, 
because_Cache, 
productElimination, 
applyLambdaEquality, 
equalityTransitivity, 
independent_pairFormation, 
dependent_set_memberEquality, 
equalitySymmetry, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
functionExtensionality, 
applyEquality, 
cumulativity, 
hypothesis, 
rename, 
setElimination, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[A,B:Type].  \mforall{}[g:A  {}\mrightarrow{}  B].
    \mforall{}f:B  {}\mrightarrow{}  |r|.  \mforall{}as:A  List.    (\mSigma{}\{r\}  x  \mmember{}  map(g;as).  f[x]  =  \mSigma{}\{r\}  x  \mmember{}  as.  f[g  x])
Date html generated:
2018_05_21-PM-09_32_59
Last ObjectModification:
2017_12_11-PM-01_12_37
Theory : matrices
Home
Index