Nuprl Lemma : rng_lsum_map

[r:Rng]. ∀[A,B:Type]. ∀[g:A ⟶ B].  ∀f:B ⟶ |r|. ∀as:A List.  {r} x ∈ map(g;as). f[x] = Σ{r} x ∈ as. f[g x] ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] map: map(f;as) list: List uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  infix_ap: y prop: and: P ∧ Q top: Top implies:  Q so_apply: x[s] rng: Rng so_lambda: λ2x.t[x] all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf rng_plus_wf and_wf rng_lsum_cons_lemma map_cons_lemma rng_zero_wf rng_lsum_nil_lemma map_nil_lemma list_wf map_wf rng_lsum_wf rng_car_wf equal_wf list_induction
Rules used in proof :  universeEquality axiomEquality functionEquality because_Cache productElimination applyLambdaEquality equalityTransitivity independent_pairFormation dependent_set_memberEquality equalitySymmetry voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination functionExtensionality applyEquality cumulativity hypothesis rename setElimination lambdaEquality sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[A,B:Type].  \mforall{}[g:A  {}\mrightarrow{}  B].
    \mforall{}f:B  {}\mrightarrow{}  |r|.  \mforall{}as:A  List.    (\mSigma{}\{r\}  x  \mmember{}  map(g;as).  f[x]  =  \mSigma{}\{r\}  x  \mmember{}  as.  f[g  x])



Date html generated: 2018_05_21-PM-09_32_59
Last ObjectModification: 2017_12_11-PM-01_12_37

Theory : matrices


Home Index