Step
*
1
of Lemma
matrix-det-is-determinant
1. [r] : CRng
2. [n] : ℕ
3. (λm.|m|) = (λM.(((λm.|m|) I) * (determinant(n;r) M))) ∈ (Matrix(n;n;r) ⟶ |r|)
⊢ ∀[M:Matrix(n;n;r)]. (|M| = (determinant(n;r) M) ∈ |r|)
BY
{ (Intro THEN (ApFunToHypEquands `Z' ⌜Z M⌝ ⌜|r|⌝ (-2)⋅ THENA Auto) THEN Reduce -1 THEN NthHypEqTrans (-1)) }
1
.....assertion.....
1. r : CRng
2. n : ℕ
3. (λm.|m|) = (λM.(((λm.|m|) I) * (determinant(n;r) M))) ∈ (Matrix(n;n;r) ⟶ |r|)
4. M : Matrix(n;n;r)
5. |M| = (|I| * (determinant(n;r) M)) ∈ |r|
⊢ (|I| * (determinant(n;r) M)) = (determinant(n;r) M) ∈ |r|
Latex:
Latex:
1. [r] : CRng
2. [n] : \mBbbN{}
3. (\mlambda{}m.|m|) = (\mlambda{}M.(((\mlambda{}m.|m|) I) * (determinant(n;r) M)))
\mvdash{} \mforall{}[M:Matrix(n;n;r)]. (|M| = (determinant(n;r) M))
By
Latex:
(Intro
THEN (ApFunToHypEquands `Z' \mkleeneopen{}Z M\mkleeneclose{} \mkleeneopen{}|r|\mkleeneclose{} (-2)\mcdot{} THENA Auto)
THEN Reduce -1
THEN NthHypEqTrans (-1))
Home
Index