Nuprl Lemma : matrix-det-is-determinant

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].  (|M| (determinant(n;r) M) ∈ |r|)


Proof




Definitions occuring in Statement :  determinant: determinant(n;r) matrix-det: |M| matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] rng: Rng crng: CRng nat: and: P ∧ Q true: True squash: T prop: infix_ap: y subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  crng_wf nat_wf matrix-det-is-det-fun det-fun-is-determinant matrix_wf rng_times_one determinant_wf rng_times_wf rng_car_wf equal_wf squash_wf true_wf det-id iff_weakening_equal
Rules used in proof :  hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut rename setElimination equalityTransitivity sqequalRule because_Cache functionExtensionality applyEquality applyLambdaEquality productElimination natural_numberEquality lambdaEquality imageElimination equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].    (|M|  =  (determinant(n;r)  M))



Date html generated: 2018_05_21-PM-09_38_07
Last ObjectModification: 2017_12_13-PM-01_41_42

Theory : matrices


Home Index