Nuprl Lemma : det-fun-is-determinant
∀[r:CRng]. ∀[n:ℕ]. ∀[d:det-fun(r;n)].  (d = (λM.((d I) * (determinant(n;r) M))) ∈ (Matrix(n;n;r) ⟶ |r|))
Proof
Definitions occuring in Statement : 
determinant: determinant(n;r)
, 
det-fun: det-fun(r;n)
, 
identity-matrix: I
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_times: *
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
crng: CRng
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
matrix: Matrix(n;m;r)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
rng: Rng
, 
squash: ↓T
, 
det-fun: det-fun(r;n)
, 
determinant: determinant(n;r)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
infix_ap: x f y
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
nequal: a ≠ b ∈ T 
, 
so_apply: x[s1;s2]
, 
matrix-mul-row: matrix-mul-row(r;k;i;M)
, 
matrix-ap: M[i,j]
, 
mx: matrix(M[x; y])
, 
less_than: a < b
, 
label: ...$L... t
, 
rng_zero: 0
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
matrix+: matrix+(r;j;M)
, 
matrix-minor: matrix-minor(i;j;m)
, 
row-op: row-op(r;a;b;k;M)
, 
ringeq_int_terms: t1 ≡ t2
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
det-fun_wf, 
le_wf, 
subtract-1-ge-0, 
nat_wf, 
crng_wf, 
false_wf, 
matrix_wf, 
int_seg_wf, 
int_seg_properties, 
iff_weakening_equal, 
subtype_rel_self, 
identity-matrix_wf, 
rng_times_one, 
rng_car_wf, 
true_wf, 
squash_wf, 
equal_wf, 
primrec0_lemma, 
det-fun+, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
subtract-add-cancel, 
decidable__lt, 
subtype_base_sq, 
int_subtype_base, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
rng_times_wf, 
det-fun+-at-identity, 
determinant_wf, 
matrix-minor_wf, 
istype-false, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
matrix-ap_wf, 
istype-universe, 
rng_sum_wf, 
rng_wf, 
mx_wf, 
eq_int_wf, 
assert_of_eq_int, 
rng_one_wf, 
neg_assert_of_eq_int, 
rng_zero_wf, 
rng_sig_wf, 
set_subtype_base, 
lelt_wf, 
rng_times_zero, 
rng_plus_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
istype-top, 
rng_sum_unroll_base, 
rng_plus_comm, 
rng_plus_zero, 
infix_ap_wf, 
rng_sum_unroll_hi, 
rng_plus_assoc, 
rng_plus_ac_1, 
matrix_ap_mx_lemma, 
decidable__equal_int, 
det-fun-zero-row, 
det-fun-row-op, 
rng_minus_wf, 
less_than_anti-reflexive, 
rng_times_over_minus, 
rng_plus_inv, 
rng_minus_zero, 
rng_times_sum_l, 
isEven_wf, 
crng_times_ac_1, 
itermAdd_wf, 
itermMultiply_wf, 
itermMinus_wf, 
ringeq-iff-rsub-is-0, 
ring_polynomial_null, 
int-to-ring_wf, 
ring_term_value_add_lemma, 
ring_term_value_mul_lemma, 
ring_term_value_var_lemma, 
ring_term_value_minus_lemma, 
ring_term_value_const_lemma, 
int-to-ring-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
because_Cache, 
lambdaFormation, 
dependent_set_memberEquality, 
intEquality, 
dependent_pairFormation, 
instantiate, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
productElimination, 
voidEquality, 
isect_memberEquality, 
functionExtensionality, 
isect_memberFormation, 
unionElimination, 
productIsType, 
addEquality, 
cumulativity, 
applyLambdaEquality, 
equalityElimination, 
equalityIsType2, 
baseApply, 
closedConclusion, 
promote_hyp, 
equalityIsType1, 
functionIsType, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
lessCases, 
axiomSqEquality, 
hyp_replacement, 
equalityIsType4
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[d:det-fun(r;n)].    (d  =  (\mlambda{}M.((d  I)  *  (determinant(n;r)  M))))
Date html generated:
2019_10_16-AM-11_27_58
Last ObjectModification:
2018_10_10-PM-03_06_14
Theory : matrices
Home
Index