Nuprl Lemma : det-fun-is-determinant

[r:CRng]. ∀[n:ℕ]. ∀[d:det-fun(r;n)].  (d M.((d I) (determinant(n;r) M))) ∈ (Matrix(n;n;r) ⟶ |r|))


Proof




Definitions occuring in Statement :  determinant: determinant(n;r) det-fun: det-fun(r;n) identity-matrix: I matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] infix_ap: y apply: a lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T crng: CRng rng_times: * rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: crng: CRng less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} matrix: Matrix(n;m;r) rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True rng: Rng squash: T det-fun: det-fun(r;n) determinant: determinant(n;r) decidable: Dec(P) or: P ∨ Q subtract: m sq_type: SQType(T) infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] nequal: a ≠ b ∈  so_apply: x[s1;s2] matrix-mul-row: matrix-mul-row(r;k;i;M) matrix-ap: M[i,j] mx: matrix(M[x; y]) less_than: a < b label: ...$L... t rng_zero: 0 pi1: fst(t) pi2: snd(t) matrix+: matrix+(r;j;M) matrix-minor: matrix-minor(i;j;m) row-op: row-op(r;a;b;k;M) ringeq_int_terms: t1 ≡ t2
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf det-fun_wf le_wf subtract-1-ge-0 nat_wf crng_wf false_wf matrix_wf int_seg_wf int_seg_properties iff_weakening_equal subtype_rel_self identity-matrix_wf rng_times_one rng_car_wf true_wf squash_wf equal_wf primrec0_lemma det-fun+ subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma subtract-add-cancel decidable__lt subtype_base_sq int_subtype_base add-associates add-swap add-commutes zero-add rng_times_wf det-fun+-at-identity determinant_wf matrix-minor_wf istype-false primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf matrix-ap_wf istype-universe rng_sum_wf rng_wf mx_wf eq_int_wf assert_of_eq_int rng_one_wf neg_assert_of_eq_int rng_zero_wf rng_sig_wf set_subtype_base lelt_wf rng_times_zero rng_plus_wf intformeq_wf int_formula_prop_eq_lemma istype-top rng_sum_unroll_base rng_plus_comm rng_plus_zero infix_ap_wf rng_sum_unroll_hi rng_plus_assoc rng_plus_ac_1 matrix_ap_mx_lemma decidable__equal_int det-fun-zero-row det-fun-row-op rng_minus_wf less_than_anti-reflexive rng_times_over_minus rng_plus_inv rng_minus_zero rng_times_sum_l isEven_wf crng_times_ac_1 itermAdd_wf itermMultiply_wf itermMinus_wf ringeq-iff-rsub-is-0 ring_polynomial_null int-to-ring_wf ring_term_value_add_lemma ring_term_value_mul_lemma ring_term_value_var_lemma ring_term_value_minus_lemma ring_term_value_const_lemma int-to-ring-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType dependent_set_memberEquality_alt because_Cache lambdaFormation dependent_set_memberEquality intEquality dependent_pairFormation instantiate baseClosed imageMemberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality productElimination voidEquality isect_memberEquality functionExtensionality isect_memberFormation unionElimination productIsType addEquality cumulativity applyLambdaEquality equalityElimination equalityIsType2 baseApply closedConclusion promote_hyp equalityIsType1 functionIsType int_eqReduceTrueSq int_eqReduceFalseSq lessCases axiomSqEquality hyp_replacement equalityIsType4

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[d:det-fun(r;n)].    (d  =  (\mlambda{}M.((d  I)  *  (determinant(n;r)  M))))



Date html generated: 2019_10_16-AM-11_27_58
Last ObjectModification: 2018_10_10-PM-03_06_14

Theory : matrices


Home Index