Nuprl Lemma : rng_sum_unroll_base
∀[r:Rng]. ∀[i,j:ℤ].  ∀[E:{i..j-} ⟶ |r|]. ((Σ(r) i ≤ k < j. E[k]) = 0 ∈ |r|) supposing i = j ∈ ℤ
Proof
Definitions occuring in Statement : 
rng_sum: rng_sum, 
rng: Rng
, 
rng_zero: 0
, 
rng_car: |r|
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
grp: Group{i}
, 
mon: Mon
, 
imon: IMonoid
, 
prop: ℙ
, 
rng_sum: rng_sum, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_id: e
, 
pi2: snd(t)
, 
uimplies: b supposing a
, 
rng: Rng
Lemmas referenced : 
mon_itop_unroll_base, 
add_grp_of_rng_wf_a, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
int_seg_wf, 
rng_car_wf, 
equal_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
intEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:Rng].  \mforall{}[i,j:\mBbbZ{}].    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |r|].  ((\mSigma{}(r)  i  \mleq{}  k  <  j.  E[k])  =  0)  supposing  i  =  j
Date html generated:
2016_05_15-PM-00_28_01
Last ObjectModification:
2015_12_26-PM-11_58_41
Theory : rings_1
Home
Index