Nuprl Lemma : det-fun_wf

[r:Rng]. ∀[n:ℕ].  (det-fun(r;n) ∈ Type)


Proof




Definitions occuring in Statement :  det-fun: det-fun(r;n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type rng: Rng
Definitions unfolded in proof :  so_apply: x[s1;s2] not: ¬A false: False so_lambda: λ2y.t[x; y] infix_ap: y all: x:A. B[x] so_apply: x[s] int_seg: {i..j-} implies:  Q so_lambda: λ2x.t[x] prop: and: P ∧ Q rng: Rng nat: det-fun: det-fun(r;n) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf nat_wf matrix-ap_wf rng_plus_wf mx_wf rng_times_wf infix_ap_wf matrix-mul-row_wf rng_minus_wf matrix-swap-cols_wf not_wf int_seg_wf all_wf rng_one_wf identity-matrix_wf equal_wf rng_car_wf matrix_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality int_eqEquality intEquality lambdaEquality natural_numberEquality hypothesisEquality functionExtensionality applyEquality productEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid functionEquality setEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].    (det-fun(r;n)  \mmember{}  Type)



Date html generated: 2018_05_21-PM-09_36_45
Last ObjectModification: 2017_12_12-AM-10_14_03

Theory : matrices


Home Index