Nuprl Lemma : det-fun_wf
∀[r:Rng]. ∀[n:ℕ].  (det-fun(r;n) ∈ Type)
Proof
Definitions occuring in Statement : 
det-fun: det-fun(r;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
rng: Rng
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
not: ¬A
, 
false: False
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
rng: Rng
, 
nat: ℕ
, 
det-fun: det-fun(r;n)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
nat_wf, 
matrix-ap_wf, 
rng_plus_wf, 
mx_wf, 
rng_times_wf, 
infix_ap_wf, 
matrix-mul-row_wf, 
rng_minus_wf, 
matrix-swap-cols_wf, 
not_wf, 
int_seg_wf, 
all_wf, 
rng_one_wf, 
identity-matrix_wf, 
equal_wf, 
rng_car_wf, 
matrix_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
int_eqEquality, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
productEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
functionEquality, 
setEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].    (det-fun(r;n)  \mmember{}  Type)
Date html generated:
2018_05_21-PM-09_36_45
Last ObjectModification:
2017_12_12-AM-10_14_03
Theory : matrices
Home
Index