Nuprl Lemma : mx_wf
∀[n,m:ℤ]. ∀[r:RngSig]. ∀[M:ℕn ⟶ ℕm ⟶ |r|].  (matrix(M[x;y]) ∈ Matrix(n;m;r))
Proof
Definitions occuring in Statement : 
mx: matrix(M[x; y])
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
mx: matrix(M[x; y])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
matrix: Matrix(n;m;r)
Lemmas referenced : 
rng_sig_wf, 
rng_car_wf, 
int_seg_wf
Rules used in proof : 
intEquality, 
because_Cache, 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[r:RngSig].  \mforall{}[M:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m  {}\mrightarrow{}  |r|].    (matrix(M[x;y])  \mmember{}  Matrix(n;m;r))
Date html generated:
2018_05_21-PM-09_34_07
Last ObjectModification:
2017_12_11-PM-00_29_21
Theory : matrices
Home
Index