Nuprl Lemma : determinant_wf

[r:CRng]. ∀[n:ℕ].  (determinant(n;r) ∈ Matrix(n;n;r) ⟶ |r|)


Proof




Definitions occuring in Statement :  determinant: determinant(n;r) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] crng: CRng rng_car: |r|
Definitions unfolded in proof :  so_apply: x[s] assert: b bnot: ¬bb less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 int_seg: {i..j-} so_lambda: λ2x.t[x] bfalse: ff sq_type: SQType(T) rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True subtype_rel: A ⊆B nequal: a ≠ b ∈  squash: T or: P ∨ Q decidable: Dec(P) rng: Rng crng: CRng btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) determinant: determinant(n;r) prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  crng_wf nat_wf int_seg_wf matrix-minor_wf rng_minus_wf assert-bnot bool_cases_sqequal eqff_to_assert decidable__lt subtract-add-cancel lelt_wf false_wf matrix-ap_wf eqtt_to_assert bool_wf isEven_wf rng_times_wf rng_car_wf infix_ap_wf rng_sum_wf iff_weakening_equal int_subtype_base equal-wf-base int_formula_prop_eq_lemma intformeq_wf eq_int_eq_false equal_wf bool_subtype_base subtype_base_sq int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le matrix_wf rng_one_wf primrec-unroll less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties
Rules used in proof :  functionExtensionality promote_hyp dependent_set_memberEquality equalityElimination addEquality productElimination universeEquality imageMemberEquality baseClosed imageElimination applyEquality instantiate because_Cache unionElimination equalitySymmetry equalityTransitivity axiomEquality independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].    (determinant(n;r)  \mmember{}  Matrix(n;n;r)  {}\mrightarrow{}  |r|)



Date html generated: 2018_05_21-PM-09_37_46
Last ObjectModification: 2017_12_12-AM-10_23_10

Theory : matrices


Home Index