Nuprl Lemma : det-fun-zero-row
∀[r:Rng]. ∀[n:ℕ]. ∀[d:det-fun(r;n)]. ∀[M:Matrix(n;n;r)].  (d M) = 0 ∈ |r| supposing ∃i:ℕn. ∀j:ℕn. (M[i,j] = 0 ∈ |r|)
Proof
Definitions occuring in Statement : 
det-fun: det-fun(r;n), 
matrix-ap: M[i,j], 
matrix: Matrix(n;m;r), 
int_seg: {i..j-}, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
apply: f a, 
natural_number: $n, 
equal: s = t ∈ T, 
rng: Rng, 
rng_zero: 0, 
rng_car: |r|
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
true: True, 
nat: ℕ, 
squash: ↓T, 
prop: ℙ, 
rng: Rng, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
det-fun: det-fun(r;n), 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nequal: a ≠ b ∈ T , 
not: ¬A, 
false: False, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
bfalse: ff, 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
int_seg: {i..j-}, 
mx: matrix(M[x; y]), 
matrix-ap: M[i,j], 
matrix-mul-row: matrix-mul-row(r;k;i;M), 
matrix: Matrix(n;m;r), 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rng_wf, 
nat_wf, 
det-fun_wf, 
matrix-ap_wf, 
all_wf, 
int_seg_wf, 
exists_wf, 
matrix_wf, 
rng_times_zero, 
rng_car_wf, 
true_wf, 
squash_wf, 
equal_wf, 
rng_zero_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
rng_times_wf, 
int_subtype_base, 
iff_weakening_equal
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
functionExtensionality, 
because_Cache, 
universeEquality, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
sqequalRule, 
equalitySymmetry, 
hyp_replacement, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
rename, 
setElimination, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
int_eqReduceFalseSq, 
voidElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
int_eqReduceTrueSq, 
independent_isectElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
intEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[d:det-fun(r;n)].  \mforall{}[M:Matrix(n;n;r)].
    (d  M)  =  0  supposing  \mexists{}i:\mBbbN{}n.  \mforall{}j:\mBbbN{}n.  (M[i,j]  =  0)
Date html generated:
2018_05_21-PM-09_36_49
Last ObjectModification:
2017_12_13-PM-07_07_03
Theory : matrices
Home
Index