Nuprl Lemma : det-fun-zero-row

[r:Rng]. ∀[n:ℕ]. ∀[d:det-fun(r;n)]. ∀[M:Matrix(n;n;r)].  (d M) 0 ∈ |r| supposing ∃i:ℕn. ∀j:ℕn. (M[i,j] 0 ∈ |r|)


Proof




Definitions occuring in Statement :  det-fun: det-fun(r;n) matrix-ap: M[i,j] matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] apply: a natural_number: $n equal: t ∈ T rng: Rng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] true: True nat: squash: T prop: rng: Rng all: x:A. B[x] and: P ∧ Q det-fun: det-fun(r;n) exists: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nequal: a ≠ b ∈  not: ¬A false: False assert: b ifthenelse: if then else fi  bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q bfalse: ff uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q int_seg: {i..j-} mx: matrix(M[x; y]) matrix-ap: M[i,j] matrix-mul-row: matrix-mul-row(r;k;i;M) matrix: Matrix(n;m;r) infix_ap: y subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rng_wf nat_wf det-fun_wf matrix-ap_wf all_wf int_seg_wf exists_wf matrix_wf rng_times_zero rng_car_wf true_wf squash_wf equal_wf rng_zero_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf rng_times_wf int_subtype_base iff_weakening_equal
Rules used in proof :  axiomEquality isect_memberEquality baseClosed imageMemberEquality natural_numberEquality functionExtensionality because_Cache universeEquality equalityTransitivity imageElimination lambdaEquality applyEquality sqequalRule equalitySymmetry hyp_replacement isectElimination extract_by_obid hypothesisEquality dependent_functionElimination hypothesis rename setElimination thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution int_eqReduceFalseSq voidElimination independent_functionElimination cumulativity instantiate promote_hyp dependent_pairFormation int_eqReduceTrueSq independent_isectElimination equalityElimination unionElimination lambdaFormation intEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[d:det-fun(r;n)].  \mforall{}[M:Matrix(n;n;r)].
    (d  M)  =  0  supposing  \mexists{}i:\mBbbN{}n.  \mforall{}j:\mBbbN{}n.  (M[i,j]  =  0)



Date html generated: 2018_05_21-PM-09_36_49
Last ObjectModification: 2017_12_13-PM-07_07_03

Theory : matrices


Home Index