Nuprl Lemma : det-fun-row-op
∀[r:Rng]. ∀[n:ℕ]. ∀[d:det-fun(r;n)]. ∀[M:Matrix(n;n;r)]. ∀[a,b:ℕn]. ∀[k:|r|].
  (d row-op(r;a;b;k;M)) = (d M) ∈ |r| supposing ¬(a = b ∈ ℤ)
Proof
Definitions occuring in Statement : 
row-op: row-op(r;a;b;k;M)
, 
det-fun: det-fun(r;n)
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
det-fun: det-fun(r;n)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
infix_ap: x f y
, 
rng: Rng
, 
nat: ℕ
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
int_seg: {i..j-}
, 
matrix: Matrix(n;m;r)
, 
matrix-ap: M[i,j]
, 
mx: matrix(M[x; y])
, 
row-op: row-op(r;a;b;k;M)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
matrix-mul-row: matrix-mul-row(r;k;i;M)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
matrix-swap-rows: matrix-swap-rows(M;i;j)
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rng_times_wf, 
matrix-ap_wf, 
int_seg_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
not_wf, 
matrix_wf, 
det-fun_wf, 
nat_wf, 
rng_wf, 
rng_plus_comm, 
mx_wf, 
rng_plus_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rng_sig_wf, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
rng_zero_wf, 
rng_times_zero, 
subtype_rel_self, 
rng_plus_zero, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
intEquality, 
isect_memberEquality, 
axiomEquality, 
functionExtensionality, 
int_eqEquality, 
applyLambdaEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
int_eqReduceTrueSq, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
int_eqReduceFalseSq, 
functionEquality, 
approximateComputation, 
voidEquality, 
independent_pairFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[d:det-fun(r;n)].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[a,b:\mBbbN{}n].  \mforall{}[k:|r|].
    (d  row-op(r;a;b;k;M))  =  (d  M)  supposing  \mneg{}(a  =  b)
Date html generated:
2018_05_21-PM-09_37_01
Last ObjectModification:
2018_05_19-PM-04_28_42
Theory : matrices
Home
Index