Nuprl Lemma : det-fun-row-op

[r:Rng]. ∀[n:ℕ]. ∀[d:det-fun(r;n)]. ∀[M:Matrix(n;n;r)]. ∀[a,b:ℕn]. ∀[k:|r|].
  (d row-op(r;a;b;k;M)) (d M) ∈ |r| supposing ¬(a b ∈ ℤ)


Proof




Definitions occuring in Statement :  row-op: row-op(r;a;b;k;M) det-fun: det-fun(r;n) matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a natural_number: $n int: equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a det-fun: det-fun(r;n) and: P ∧ Q all: x:A. B[x] infix_ap: y rng: Rng nat: prop: squash: T true: True int_seg: {i..j-} matrix: Matrix(n;m;r) matrix-ap: M[i,j] mx: matrix(M[x; y]) row-op: row-op(r;a;b;k;M) false: False implies:  Q not: ¬A so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] matrix-mul-row: matrix-mul-row(r;k;i;M) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  matrix-swap-rows: matrix-swap-rows(M;i;j) lelt: i ≤ j < k ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtype_rel: A ⊆B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rng_times_wf matrix-ap_wf int_seg_wf equal_wf squash_wf true_wf rng_car_wf not_wf matrix_wf det-fun_wf nat_wf rng_wf rng_plus_comm mx_wf rng_plus_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rng_sig_wf int_seg_properties nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-base int_subtype_base decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf rng_zero_wf rng_times_zero subtype_rel_self rng_plus_zero iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination hypothesis dependent_functionElimination hypothesisEquality lambdaEquality applyEquality extract_by_obid isectElimination because_Cache natural_numberEquality sqequalRule hyp_replacement equalitySymmetry imageElimination equalityTransitivity universeEquality imageMemberEquality baseClosed intEquality isect_memberEquality axiomEquality functionExtensionality int_eqEquality applyLambdaEquality lambdaFormation unionElimination equalityElimination independent_isectElimination int_eqReduceTrueSq dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination int_eqReduceFalseSq functionEquality approximateComputation voidEquality independent_pairFormation dependent_set_memberEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[d:det-fun(r;n)].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[a,b:\mBbbN{}n].  \mforall{}[k:|r|].
    (d  row-op(r;a;b;k;M))  =  (d  M)  supposing  \mneg{}(a  =  b)



Date html generated: 2018_05_21-PM-09_37_01
Last ObjectModification: 2018_05_19-PM-04_28_42

Theory : matrices


Home Index