Nuprl Lemma : ringeq-iff-rsub-is-0

[r:Rng]. ∀[a,b:|r|].  uiff(a b ∈ |r|;(a +r (-r b)) 0 ∈ |r|)


Proof




Definitions occuring in Statement :  rng: Rng rng_minus: -r rng_zero: 0 rng_plus: +r rng_car: |r| uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T rng: Rng infix_ap: y true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q prop:
Lemmas referenced :  equal_wf rng_car_wf rng_plus_wf rng_minus_wf rng_zero_wf iff_weakening_equal rng_plus_inv rng_properties rng_wf rng_plus_zero squash_wf true_wf subtype_rel_self rng_plus_assoc rng_plus_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis setElimination rename hypothesisEquality equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed equalityTransitivity independent_isectElimination productElimination independent_functionElimination equalityIstype inhabitedIsType independent_pairEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType applyLambdaEquality hyp_replacement lambdaEquality universeEquality instantiate

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:|r|].    uiff(a  =  b;(a  +r  (-r  b))  =  0)



Date html generated: 2020_05_19-PM-10_08_12
Last ObjectModification: 2020_01_08-PM-06_00_28

Theory : rings_1


Home Index