Nuprl Lemma : det-fun+

[n:ℕ]. ∀[J:ℕ1]. ∀[r:Rng]. ∀[d:det-fun(r;n 1)].  M.(d matrix+(r;J;M)) ∈ det-fun(r;n))


Proof




Definitions occuring in Statement :  matrix+: matrix+(r;j;M) det-fun: det-fun(r;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] add: m natural_number: $n rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T det-fun: det-fun(r;n) and: P ∧ Q nat: rng: Rng cand: c∧ B all: x:A. B[x] implies:  Q not: ¬A subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a false: False infix_ap: y so_lambda: λ2y.t[x; y] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  so_apply: x[s1;s2] ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: subtract: m squash: T true: True matrix+: matrix+(r;j;M) matrix-mul-row: matrix-mul-row(r;k;i;M) matrix-ap: M[i,j] mx: matrix(M[x; y]) less_than: a < b less_than': less_than'(a;b) rev_implies:  Q iff: ⇐⇒ Q matrix-swap-rows: matrix-swap-rows(M;i;j)
Lemmas referenced :  matrix+_wf matrix_wf rng_car_wf int_seg_wf istype-int set_subtype_base lelt_wf int_subtype_base istype-void matrix-swap-rows_wf matrix-mul-row_wf rng_times_wf mx_wf eq_int_wf eqtt_to_assert assert_of_eq_int infix_ap_wf rng_plus_wf matrix-ap_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int rng_minus_wf rng_zero_wf det-fun_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf rng_wf nat_wf add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma add-subtract-cancel decidable__lt less_than_wf equal_wf squash_wf true_wf istype-universe rng_sig_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma rng_one_wf lt_int_wf assert_of_lt_int istype-top iff_weakening_uiff assert_wf rng_times_zero rng_plus_zero matrix_ap_mx_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt productElimination lambdaEquality_alt applyEquality hypothesisEquality introduction extract_by_obid isectElimination because_Cache hypothesis universeIsType sqequalRule lambdaFormation_alt natural_numberEquality independent_pairFormation functionIsType inhabitedIsType equalityIsType4 baseApply closedConclusion baseClosed intEquality independent_isectElimination equalityIsType1 productIsType unionElimination equalityElimination int_eqReduceTrueSq equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIsType2 promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination int_eqReduceFalseSq addEquality approximateComputation int_eqEquality isect_memberEquality_alt hyp_replacement imageElimination universeEquality imageMemberEquality lessCases axiomSqEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[J:\mBbbN{}n  +  1].  \mforall{}[r:Rng].  \mforall{}[d:det-fun(r;n  +  1)].    (\mlambda{}M.(d  matrix+(r;J;M))  \mmember{}  det-fun(r;n))



Date html generated: 2019_10_16-AM-11_27_38
Last ObjectModification: 2018_10_10-PM-03_06_07

Theory : matrices


Home Index