Step * of Lemma det-fun+

[n:ℕ]. ∀[J:ℕ1]. ∀[r:Rng]. ∀[d:det-fun(r;n 1)].  M.(d matrix+(r;J;M)) ∈ det-fun(r;n))
BY
(Intros THEN Unhide THEN -1 THEN (MemTypeCD THENW Auto) THEN Reduce THEN Auto) }

1
1. : ℕ
2. : ℕ1
3. Rng
4. Matrix(n 1;n 1;r) ⟶ |r|
5. ∀i:ℕ1. ∀k:|r|. ∀M:Matrix(n 1;n 1;r).  ((d matrix-mul-row(r;k;i;M)) (k (d M)) ∈ |r|)
6. ∀i:ℕ1. ∀row:ℕ1 ⟶ |r|. ∀M:Matrix(n 1;n 1;r).
     ((d matrix(if x=i then (row y) +r M[x,y] else M[x,y]))
     ((d matrix(if x=i then row else M[x,y])) +r (d M))
     ∈ |r|)
7. ∀i,j:ℕ1.  ((¬(i j ∈ ℤ))  (∀M:Matrix(n 1;n 1;r). ((d matrix-swap-rows(M;i;j)) (-r (d M)) ∈ |r|)))
8. ∀i,j:ℕ1.
     ((¬(i j ∈ ℤ))
      (∀M:Matrix(n 1;n 1;r). ((matrix-swap-rows(M;i;j) M ∈ Matrix(n 1;n 1;r))  ((d M) 0 ∈ |r|))))
9. : ℕn
10. |r|
11. Matrix(n;n;r)
⊢ (d matrix+(r;J;matrix-mul-row(r;k;i;M))) (k (d matrix+(r;J;M))) ∈ |r|

2
1. : ℕ
2. : ℕ1
3. Rng
4. Matrix(n 1;n 1;r) ⟶ |r|
5. ∀i:ℕ1. ∀k:|r|. ∀M:Matrix(n 1;n 1;r).  ((d matrix-mul-row(r;k;i;M)) (k (d M)) ∈ |r|)
6. ∀i:ℕ1. ∀row:ℕ1 ⟶ |r|. ∀M:Matrix(n 1;n 1;r).
     ((d matrix(if x=i then (row y) +r M[x,y] else M[x,y]))
     ((d matrix(if x=i then row else M[x,y])) +r (d M))
     ∈ |r|)
7. ∀i,j:ℕ1.  ((¬(i j ∈ ℤ))  (∀M:Matrix(n 1;n 1;r). ((d matrix-swap-rows(M;i;j)) (-r (d M)) ∈ |r|)))
8. ∀i,j:ℕ1.
     ((¬(i j ∈ ℤ))
      (∀M:Matrix(n 1;n 1;r). ((matrix-swap-rows(M;i;j) M ∈ Matrix(n 1;n 1;r))  ((d M) 0 ∈ |r|))))
9. ∀i:ℕn. ∀k:|r|. ∀M:Matrix(n;n;r).  ((d matrix+(r;J;matrix-mul-row(r;k;i;M))) (k (d matrix+(r;J;M))) ∈ |r|)
10. : ℕn
11. row : ℕn ⟶ |r|
12. Matrix(n;n;r)
⊢ (d matrix+(r;J;matrix(if x=i then (row y) +r M[x,y] else M[x,y])))
((d matrix+(r;J;matrix(if x=i then row else M[x,y]))) +r (d matrix+(r;J;M)))
∈ |r|

3
1. : ℕ
2. : ℕ1
3. Rng
4. Matrix(n 1;n 1;r) ⟶ |r|
5. ∀i:ℕ1. ∀k:|r|. ∀M:Matrix(n 1;n 1;r).  ((d matrix-mul-row(r;k;i;M)) (k (d M)) ∈ |r|)
6. ∀i:ℕ1. ∀row:ℕ1 ⟶ |r|. ∀M:Matrix(n 1;n 1;r).
     ((d matrix(if x=i then (row y) +r M[x,y] else M[x,y]))
     ((d matrix(if x=i then row else M[x,y])) +r (d M))
     ∈ |r|)
7. ∀i,j:ℕ1.  ((¬(i j ∈ ℤ))  (∀M:Matrix(n 1;n 1;r). ((d matrix-swap-rows(M;i;j)) (-r (d M)) ∈ |r|)))
8. ∀i,j:ℕ1.
     ((¬(i j ∈ ℤ))
      (∀M:Matrix(n 1;n 1;r). ((matrix-swap-rows(M;i;j) M ∈ Matrix(n 1;n 1;r))  ((d M) 0 ∈ |r|))))
9. ∀i:ℕn. ∀k:|r|. ∀M:Matrix(n;n;r).  ((d matrix+(r;J;matrix-mul-row(r;k;i;M))) (k (d matrix+(r;J;M))) ∈ |r|)
10. ∀i:ℕn. ∀row:ℕn ⟶ |r|. ∀M:Matrix(n;n;r).
      ((d matrix+(r;J;matrix(if x=i then (row y) +r M[x,y] else M[x,y])))
      ((d matrix+(r;J;matrix(if x=i then row else M[x,y]))) +r (d matrix+(r;J;M)))
      ∈ |r|)
11. : ℕn
12. : ℕn
13. ¬(i j ∈ ℤ)
14. Matrix(n;n;r)
⊢ (d matrix+(r;J;matrix-swap-rows(M;i;j))) (-r (d matrix+(r;J;M))) ∈ |r|

4
1. : ℕ
2. : ℕ1
3. Rng
4. Matrix(n 1;n 1;r) ⟶ |r|
5. ∀i:ℕ1. ∀k:|r|. ∀M:Matrix(n 1;n 1;r).  ((d matrix-mul-row(r;k;i;M)) (k (d M)) ∈ |r|)
6. ∀i:ℕ1. ∀row:ℕ1 ⟶ |r|. ∀M:Matrix(n 1;n 1;r).
     ((d matrix(if x=i then (row y) +r M[x,y] else M[x,y]))
     ((d matrix(if x=i then row else M[x,y])) +r (d M))
     ∈ |r|)
7. ∀i,j:ℕ1.  ((¬(i j ∈ ℤ))  (∀M:Matrix(n 1;n 1;r). ((d matrix-swap-rows(M;i;j)) (-r (d M)) ∈ |r|)))
8. ∀i,j:ℕ1.
     ((¬(i j ∈ ℤ))
      (∀M:Matrix(n 1;n 1;r). ((matrix-swap-rows(M;i;j) M ∈ Matrix(n 1;n 1;r))  ((d M) 0 ∈ |r|))))
9. ∀i:ℕn. ∀k:|r|. ∀M:Matrix(n;n;r).  ((d matrix+(r;J;matrix-mul-row(r;k;i;M))) (k (d matrix+(r;J;M))) ∈ |r|)
10. ∀i:ℕn. ∀row:ℕn ⟶ |r|. ∀M:Matrix(n;n;r).
      ((d matrix+(r;J;matrix(if x=i then (row y) +r M[x,y] else M[x,y])))
      ((d matrix+(r;J;matrix(if x=i then row else M[x,y]))) +r (d matrix+(r;J;M)))
      ∈ |r|)
11. ∀i,j:ℕn.
      ((¬(i j ∈ ℤ))  (∀M:Matrix(n;n;r). ((d matrix+(r;J;matrix-swap-rows(M;i;j))) (-r (d matrix+(r;J;M))) ∈ |r|)))
12. : ℕn
13. : ℕn
14. ¬(i j ∈ ℤ)
15. Matrix(n;n;r)
16. matrix-swap-rows(M;i;j) M ∈ Matrix(n;n;r)
⊢ (d matrix+(r;J;M)) 0 ∈ |r|


Latex:


Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[J:\mBbbN{}n  +  1].  \mforall{}[r:Rng].  \mforall{}[d:det-fun(r;n  +  1)].    (\mlambda{}M.(d  matrix+(r;J;M))  \mmember{}  det-fun(r;n))


By


Latex:
(Intros  THEN  Unhide  THEN  D  -1  THEN  (MemTypeCD  THENW  Auto)  THEN  Reduce  0  THEN  Auto)




Home Index