Nuprl Lemma : matrix+_wf
∀[n,m:ℤ]. ∀[j:ℕm + 1]. ∀[r:RngSig]. ∀[M:Matrix(n;m;r)].  (matrix+(r;j;M) ∈ Matrix(n + 1;m + 1;r))
Proof
Definitions occuring in Statement : 
matrix+: matrix+(r;j;M)
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
matrix+: matrix+(r;j;M)
, 
so_lambda: λ2x y.t[x; y]
, 
int_seg: {i..j-}
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
prop: ℙ
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
mx_wf, 
rng_one_wf, 
rng_zero_wf, 
less_than_wf, 
matrix-ap_wf, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
top_wf, 
int_seg_wf, 
matrix_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
addEquality, 
hypothesisEquality, 
natural_numberEquality, 
because_Cache, 
lambdaEquality, 
int_eqEquality, 
setElimination, 
rename, 
hypothesis, 
lessCases, 
independent_pairFormation, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
axiomSqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
intEquality, 
axiomEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[j:\mBbbN{}m  +  1].  \mforall{}[r:RngSig].  \mforall{}[M:Matrix(n;m;r)].    (matrix+(r;j;M)  \mmember{}  Matrix(n  +  1;m  +  1;r))
Date html generated:
2019_10_16-AM-11_27_28
Last ObjectModification:
2018_08_20-PM-09_42_13
Theory : matrices
Home
Index