Nuprl Lemma : matrix-swap-rows_wf
∀[n,m:ℤ]. ∀[r:RngSig]. ∀[i,j:ℕn]. ∀[M:Matrix(n;m;r)].  (matrix-swap-rows(M;i;j) ∈ Matrix(n;m;r))
Proof
Definitions occuring in Statement : 
matrix-swap-rows: matrix-swap-rows(M;i;j)
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
, 
rng_sig: RngSig
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
int_seg: {i..j-}
, 
so_lambda: λ2x y.t[x; y]
, 
matrix-swap-rows: matrix-swap-rows(M;i;j)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
matrix_wf, 
int_seg_wf, 
matrix-ap_wf, 
mx_wf
Rules used in proof : 
intEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
natural_numberEquality, 
because_Cache, 
hypothesis, 
rename, 
setElimination, 
int_eqEquality, 
lambdaEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[r:RngSig].  \mforall{}[i,j:\mBbbN{}n].  \mforall{}[M:Matrix(n;m;r)].    (matrix-swap-rows(M;i;j)  \mmember{}  Matrix(n;m;r))
Date html generated:
2018_05_21-PM-09_34_18
Last ObjectModification:
2017_12_11-PM-00_29_24
Theory : matrices
Home
Index