Nuprl Lemma : det-fun+-at-identity

[n:ℕ]. ∀[J:ℕ1]. ∀[r:Rng]. ∀[d:det-fun(r;n 1)].
  ((d matrix+(r;J;I)) if isEven(J) then else -r (d I) fi  ∈ |r|)


Proof




Definitions occuring in Statement :  matrix+: matrix+(r;j;M) det-fun: det-fun(r;n) identity-matrix: I isEven: isEven(n) int_seg: {i..j-} nat: ifthenelse: if then else fi  uall: [x:A]. B[x] apply: a add: m natural_number: $n equal: t ∈ T rng: Rng rng_minus: -r rng_car: |r|
Definitions unfolded in proof :  true: True less_than': less_than'(a;b) less_than: a < b nequal: a ≠ b ∈  assert: b ifthenelse: if then else fi  bnot: ¬bb bfalse: ff false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A lelt: i ≤ j < k ge: i ≥  nat: and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 guard: {T} implies:  Q sq_type: SQType(T) uimplies: supposing a or: P ∨ Q decidable: Dec(P) int_seg: {i..j-} rng: Rng prop: squash: T so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top matrix-swap-rows: matrix-swap-rows(M;i;j) matrix+: matrix+(r;j;M) identity-matrix: I all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] le: A ≤ B subtype_rel: A ⊆B det-fun: det-fun(r;n) modulus: mod n eq_int: (i =z j) isEven: isEven(n) rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_wf rng_wf le_wf int_term_value_add_lemma itermAdd_wf decidable__le det-fun_wf top_wf rng_one_wf rng_zero_wf int_formula_prop_less_lemma intformless_wf int_formula_prop_not_lemma int_term_value_subtract_lemma intformnot_wf itermSubtract_wf subtract_wf less_than_wf assert_of_lt_int lt_int_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties int_seg_properties assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf int_subtype_base subtype_base_sq decidable__equal_int rng_sig_wf rng_car_wf int_seg_wf true_wf squash_wf mx_wf matrix_ap_mx_lemma decidable__lt false_wf int_seg_subtype_nat ge_wf assert_wf btrue_wf isEven_wf iff_imp_equal_bool iff_weakening_equal matrix_wf rng_minus_wf identity-matrix_wf matrix+_wf equal-wf-base lelt_wf rng_minus_minus bfalse_wf not-even-succ-implies-even iff_wf assert_of_bnot not_wf bnot_wf subtract-add-cancel even-succ-implies-not-even
Rules used in proof :  axiomEquality dependent_set_memberEquality addEquality baseClosed imageMemberEquality sqequalAxiom lessCases int_eqReduceFalseSq promote_hyp independent_pairFormation int_eqEquality dependent_pairFormation approximateComputation int_eqReduceTrueSq productElimination equalityElimination independent_functionElimination independent_isectElimination cumulativity instantiate unionElimination rename setElimination intEquality because_Cache natural_numberEquality functionEquality equalitySymmetry equalityTransitivity hypothesisEquality isectElimination imageElimination lambdaEquality applyEquality hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid sqequalRule lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution intWeakElimination functionExtensionality universeEquality applyLambdaEquality impliesFunctionality addLevel

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[J:\mBbbN{}n  +  1].  \mforall{}[r:Rng].  \mforall{}[d:det-fun(r;n  +  1)].
    ((d  matrix+(r;J;I))  =  if  isEven(J)  then  d  I  else  -r  (d  I)  fi  )



Date html generated: 2018_05_21-PM-09_37_41
Last ObjectModification: 2017_12_13-PM-06_25_26

Theory : matrices


Home Index