Nuprl Lemma : det-fun+-at-identity
∀[n:ℕ]. ∀[J:ℕn + 1]. ∀[r:Rng]. ∀[d:det-fun(r;n + 1)].
  ((d matrix+(r;J;I)) = if isEven(J) then d I else -r (d I) fi  ∈ |r|)
Proof
Definitions occuring in Statement : 
matrix+: matrix+(r;j;M)
, 
det-fun: det-fun(r;n)
, 
identity-matrix: I
, 
isEven: isEven(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_minus: -r
, 
rng_car: |r|
Definitions unfolded in proof : 
true: True
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
bfalse: ff
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
nat: ℕ
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
int_seg: {i..j-}
, 
rng: Rng
, 
prop: ℙ
, 
squash: ↓T
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
matrix-swap-rows: matrix-swap-rows(M;i;j)
, 
matrix+: matrix+(r;j;M)
, 
identity-matrix: I
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
det-fun: det-fun(r;n)
, 
modulus: a mod n
, 
eq_int: (i =z j)
, 
isEven: isEven(n)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
nat_wf, 
rng_wf, 
le_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
decidable__le, 
det-fun_wf, 
top_wf, 
rng_one_wf, 
rng_zero_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
intformnot_wf, 
itermSubtract_wf, 
subtract_wf, 
less_than_wf, 
assert_of_lt_int, 
lt_int_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
int_seg_properties, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
rng_sig_wf, 
rng_car_wf, 
int_seg_wf, 
true_wf, 
squash_wf, 
mx_wf, 
matrix_ap_mx_lemma, 
decidable__lt, 
false_wf, 
int_seg_subtype_nat, 
ge_wf, 
assert_wf, 
btrue_wf, 
isEven_wf, 
iff_imp_equal_bool, 
iff_weakening_equal, 
matrix_wf, 
rng_minus_wf, 
identity-matrix_wf, 
matrix+_wf, 
equal-wf-base, 
lelt_wf, 
rng_minus_minus, 
bfalse_wf, 
not-even-succ-implies-even, 
iff_wf, 
assert_of_bnot, 
not_wf, 
bnot_wf, 
subtract-add-cancel, 
even-succ-implies-not-even
Rules used in proof : 
axiomEquality, 
dependent_set_memberEquality, 
addEquality, 
baseClosed, 
imageMemberEquality, 
sqequalAxiom, 
lessCases, 
int_eqReduceFalseSq, 
promote_hyp, 
independent_pairFormation, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
int_eqReduceTrueSq, 
productElimination, 
equalityElimination, 
independent_functionElimination, 
independent_isectElimination, 
cumulativity, 
instantiate, 
unionElimination, 
rename, 
setElimination, 
intEquality, 
because_Cache, 
natural_numberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
imageElimination, 
lambdaEquality, 
applyEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
intWeakElimination, 
functionExtensionality, 
universeEquality, 
applyLambdaEquality, 
impliesFunctionality, 
addLevel
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[J:\mBbbN{}n  +  1].  \mforall{}[r:Rng].  \mforall{}[d:det-fun(r;n  +  1)].
    ((d  matrix+(r;J;I))  =  if  isEven(J)  then  d  I  else  -r  (d  I)  fi  )
Date html generated:
2018_05_21-PM-09_37_41
Last ObjectModification:
2017_12_13-PM-06_25_26
Theory : matrices
Home
Index