Nuprl Lemma : rng_prod_empty_lemma

f,r:Top.  (r) 0 ≤ i < 0. f[i] 1)


Proof




Definitions occuring in Statement :  top: Top so_apply: x[s] all: x:A. B[x] natural_number: $n sqequal: t rng_prod: rng_prod rng_one: 1
Definitions unfolded in proof :  member: t ∈ T bfalse: ff ifthenelse: if then else fi  subtract: m lt_int: i <j ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] grp_id: e pi1: fst(t) pi2: snd(t) grp_op: * mul_mon_of_rng: r↓xmn mon_itop: Π lb ≤ i < ub. E[i] rng_prod: rng_prod all: x:A. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  extract_by_obid introduction hypothesis sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}f,r:Top.    (\mPi{}(r)  0  \mleq{}  i  <  0.  f[i]  \msim{}  1)



Date html generated: 2018_05_21-PM-09_33_26
Last ObjectModification: 2017_12_11-PM-06_53_08

Theory : matrices


Home Index