Step
*
1
2
1
of Lemma
scalar-triple-product-non-zero
1. r : IntegDom{i}
2. a : ℕ3 ⟶ |r|
3. b : ℕ3 ⟶ |r|
4. c : ℕ3 ⟶ |r|
5. |a,b,c| = |λi.[a; b; c][i]| ∈ |r|
6. ¬(|a,b,c| = 0 ∈ |r|)
7. u : ℕ3 ⟶ |r|
8. (a . u) = 0 ∈ |r|
9. (b . u) = 0 ∈ |r|
10. (c . u) = 0 ∈ |r|
11. λi.[a; b; c][i] ∈ Matrix(3;3;r)
12. matrix(u x) = 0 ∈ Column(3;r)
13. x : ℕ3
⊢ (u x) = (0 x) ∈ |r|
BY
{ ((ApFunToHypEquands `M' ⌜M[x,0]⌝ ⌜|r|⌝ (-2)⋅ THENA Auto) THEN RepUR ``zero-matrix`` -1) }
1
1. r : IntegDom{i}
2. a : ℕ3 ⟶ |r|
3. b : ℕ3 ⟶ |r|
4. c : ℕ3 ⟶ |r|
5. |a,b,c| = |λi.[a; b; c][i]| ∈ |r|
6. ¬(|a,b,c| = 0 ∈ |r|)
7. u : ℕ3 ⟶ |r|
8. (a . u) = 0 ∈ |r|
9. (b . u) = 0 ∈ |r|
10. (c . u) = 0 ∈ |r|
11. λi.[a; b; c][i] ∈ Matrix(3;3;r)
12. matrix(u x) = 0 ∈ Column(3;r)
13. x : ℕ3
14. (u x) = 0 ∈ |r|
⊢ (u x) = (0 x) ∈ |r|
Latex:
Latex:
1. r : IntegDom\{i\}
2. a : \mBbbN{}3 {}\mrightarrow{} |r|
3. b : \mBbbN{}3 {}\mrightarrow{} |r|
4. c : \mBbbN{}3 {}\mrightarrow{} |r|
5. |a,b,c| = |\mlambda{}i.[a; b; c][i]|
6. \mneg{}(|a,b,c| = 0)
7. u : \mBbbN{}3 {}\mrightarrow{} |r|
8. (a . u) = 0
9. (b . u) = 0
10. (c . u) = 0
11. \mlambda{}i.[a; b; c][i] \mmember{} Matrix(3;3;r)
12. matrix(u x) = 0
13. x : \mBbbN{}3
\mvdash{} (u x) = (0 x)
By
Latex:
((ApFunToHypEquands `M' \mkleeneopen{}M[x,0]\mkleeneclose{} \mkleeneopen{}|r|\mkleeneclose{} (-2)\mcdot{} THENA Auto) THEN RepUR ``zero-matrix`` -1)
Home
Index