Nuprl Lemma : scalar-triple-product-non-zero

[r:IntegDom{i}]. ∀[a,b,c:ℕ3 ⟶ |r|].
  ∀[u:ℕ3 ⟶ |r|]. (((a u) 0 ∈ |r|)  ((b u) 0 ∈ |r|)  ((c u) 0 ∈ |r|)  (u 0 ∈ (ℕ3 ⟶ |r|))) 
  supposing ¬(|a,b,c| 0 ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-triple-product: |a,b,c| scalar-product: (a b) zero-vector: 0 int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: rng: Rng crng: CRng prop: implies:  Q uimplies: supposing a integ_dom: IntegDom{i} member: t ∈ T uall: [x:A]. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True squash: T top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) all: x:A. B[x] lelt: i ≤ j < k guard: {T} int_seg: {i..j-} matrix: Matrix(n;m;r) matrix-ap: M[i,j] matrix-times: (M*N) zero-matrix: 0 subtract: m scalar-product: (a b) cons: [a b] select: L[n] sq_type: SQType(T) less_than: a < b zero-vector: 0
Lemmas referenced :  integ_dom_wf scalar-triple-product_wf not_wf rng_zero_wf int_seg_wf le_wf false_wf scalar-product_wf rng_car_wf equal_wf scalar-triple-product-as-det mx_wf iff_weakening_equal true_wf squash_wf null-space-unique int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf decidable__lt length_of_nil_lemma length_of_cons_lemma int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le int_seg_properties nil_wf cons_wf select_wf matrix_ap_mx_lemma rng_sig_wf int_seg_cases int_seg_subtype int_subtype_base subtype_base_sq decidable__equal_int lelt_wf matrix-ap_wf
Rules used in proof :  isect_memberEquality functionEquality axiomEquality dependent_functionElimination lambdaEquality equalitySymmetry equalityTransitivity applyEquality functionExtensionality independent_pairFormation sqequalRule natural_numberEquality dependent_set_memberEquality because_Cache lambdaFormation hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut baseClosed imageMemberEquality levelHypothesis equalityUniverse universeEquality imageElimination addEquality voidEquality voidElimination intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation unionElimination productElimination independent_isectElimination hypothesis_subsumption cumulativity instantiate applyLambdaEquality

Latex:
\mforall{}[r:IntegDom\{i\}].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].
    \mforall{}[u:\mBbbN{}3  {}\mrightarrow{}  |r|].  (((a  .  u)  =  0)  {}\mRightarrow{}  ((b  .  u)  =  0)  {}\mRightarrow{}  ((c  .  u)  =  0)  {}\mRightarrow{}  (u  =  0)) 
    supposing  \mneg{}(|a,b,c|  =  0)



Date html generated: 2018_05_21-PM-09_45_21
Last ObjectModification: 2017_12_20-PM-06_25_31

Theory : matrices


Home Index