Nuprl Lemma : scalar-triple-product-non-zero
∀[r:IntegDom{i}]. ∀[a,b,c:ℕ3 ⟶ |r|].
  ∀[u:ℕ3 ⟶ |r|]. (((a . u) = 0 ∈ |r|) 
⇒ ((b . u) = 0 ∈ |r|) 
⇒ ((c . u) = 0 ∈ |r|) 
⇒ (u = 0 ∈ (ℕ3 ⟶ |r|))) 
  supposing ¬(|a,b,c| = 0 ∈ |r|)
Proof
Definitions occuring in Statement : 
scalar-triple-product: |a,b,c|
, 
scalar-product: (a . b)
, 
zero-vector: 0
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
integ_dom: IntegDom{i}
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
rng: Rng
, 
crng: CRng
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
integ_dom: IntegDom{i}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
int_seg: {i..j-}
, 
matrix: Matrix(n;m;r)
, 
matrix-ap: M[i,j]
, 
matrix-times: (M*N)
, 
zero-matrix: 0
, 
subtract: n - m
, 
scalar-product: (a . b)
, 
cons: [a / b]
, 
select: L[n]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
zero-vector: 0
Lemmas referenced : 
integ_dom_wf, 
scalar-triple-product_wf, 
not_wf, 
rng_zero_wf, 
int_seg_wf, 
le_wf, 
false_wf, 
scalar-product_wf, 
rng_car_wf, 
equal_wf, 
scalar-triple-product-as-det, 
mx_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
null-space-unique, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
length_of_nil_lemma, 
length_of_cons_lemma, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
int_seg_properties, 
nil_wf, 
cons_wf, 
select_wf, 
matrix_ap_mx_lemma, 
rng_sig_wf, 
int_seg_cases, 
int_seg_subtype, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
lelt_wf, 
matrix-ap_wf
Rules used in proof : 
isect_memberEquality, 
functionEquality, 
axiomEquality, 
dependent_functionElimination, 
lambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
functionExtensionality, 
independent_pairFormation, 
sqequalRule, 
natural_numberEquality, 
dependent_set_memberEquality, 
because_Cache, 
lambdaFormation, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut, 
baseClosed, 
imageMemberEquality, 
levelHypothesis, 
equalityUniverse, 
universeEquality, 
imageElimination, 
addEquality, 
voidEquality, 
voidElimination, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
productElimination, 
independent_isectElimination, 
hypothesis_subsumption, 
cumulativity, 
instantiate, 
applyLambdaEquality
Latex:
\mforall{}[r:IntegDom\{i\}].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].
    \mforall{}[u:\mBbbN{}3  {}\mrightarrow{}  |r|].  (((a  .  u)  =  0)  {}\mRightarrow{}  ((b  .  u)  =  0)  {}\mRightarrow{}  ((c  .  u)  =  0)  {}\mRightarrow{}  (u  =  0)) 
    supposing  \mneg{}(|a,b,c|  =  0)
Date html generated:
2018_05_21-PM-09_45_21
Last ObjectModification:
2017_12_20-PM-06_25_31
Theory : matrices
Home
Index