Nuprl Lemma : scalar-triple-product_wf
∀[r:Rng]. ∀[a,b,c:ℕ3 ⟶ |r|].  (|a,b,c| ∈ |r|)
Proof
Definitions occuring in Statement : 
scalar-triple-product: |a,b,c|
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
rng: Rng
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
scalar-triple-product: |a,b,c|
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
rng_car_wf, 
cross-product_wf, 
int_seg_wf, 
le_wf, 
false_wf, 
scalar-product_wf
Rules used in proof : 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
rename, 
setElimination, 
applyEquality, 
functionExtensionality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    (|a,b,c|  \mmember{}  |r|)
Date html generated:
2018_05_21-PM-09_42_17
Last ObjectModification:
2017_12_18-PM-00_47_36
Theory : matrices
Home
Index