Nuprl Lemma : scalar-triple-product_wf

[r:Rng]. ∀[a,b,c:ℕ3 ⟶ |r|].  (|a,b,c| ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-triple-product: |a,b,c| int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n rng: Rng rng_car: |r|
Definitions unfolded in proof :  rng: Rng prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: scalar-triple-product: |a,b,c| member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf rng_car_wf cross-product_wf int_seg_wf le_wf false_wf scalar-product_wf
Rules used in proof :  isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache rename setElimination applyEquality functionExtensionality hypothesis lambdaFormation independent_pairFormation natural_numberEquality dependent_set_memberEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    (|a,b,c|  \mmember{}  |r|)



Date html generated: 2018_05_21-PM-09_42_17
Last ObjectModification: 2017_12_18-PM-00_47_36

Theory : matrices


Home Index