Nuprl Lemma : scalar-triple-product-as-det

[r:CRng]. ∀[a,b,c:ℕ3 ⟶ |r|].  (|a,b,c| i.[a; b; c][i]| ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-triple-product: |a,b,c| matrix-det: |M| select: L[n] cons: [a b] nil: [] int_seg: {i..j-} uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T matrix: Matrix(n;m;r) crng: CRng rng: Rng int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: nat: less_than': less_than'(a;b) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q scalar-triple-product: |a,b,c| cross-product: (a b) scalar-product: (a b) determinant: determinant(n;r) lt_int: i <j subtract: m ifthenelse: if then else fi  bfalse: ff rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y btrue: tt select: L[n] cons: [a b] matrix-minor: matrix-minor(i;j;m) matrix-ap: M[i,j] isEven: isEven(n) modulus: mod n remainder: rem m absval: |i| eq_int: (i =z j) infix_ap: y uiff: uiff(P;Q) ringeq_int_terms: t1 ≡ t2
Lemmas referenced :  select_wf int_seg_wf rng_car_wf cons_wf nil_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length_of_cons_lemma length_of_nil_lemma decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma equal_wf squash_wf true_wf istype-universe scalar-triple-product_wf matrix-det-is-determinant istype-le subtype_rel_self iff_weakening_equal primrec-unroll primrec1_lemma rng_times_over_minus rng_plus_zero rng_times_one crng_wf rng_plus_wf rng_times_wf istype-less_than rng_minus_wf rng_zero_wf rng_one_wf itermMultiply_wf itermMinus_wf ringeq-iff-rsub-is-0 ring_polynomial_null int-to-ring_wf ring_term_value_add_lemma ring_term_value_mul_lemma ring_term_value_var_lemma ring_term_value_minus_lemma ring_term_value_const_lemma int-to-ring-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality closedConclusion natural_numberEquality hypothesis setElimination rename because_Cache hypothesisEquality independent_isectElimination productElimination imageElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType addEquality applyEquality equalityTransitivity equalitySymmetry inhabitedIsType instantiate universeEquality dependent_set_memberEquality_alt lambdaFormation_alt imageMemberEquality baseClosed callbyvalueReduce sqleReflexivity axiomEquality isectIsTypeImplies functionIsType productIsType

Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    (|a,b,c|  =  |\mlambda{}i.[a;  b;  c][i]|)



Date html generated: 2020_05_20-AM-09_04_05
Last ObjectModification: 2019_11_27-PM-02_54_26

Theory : matrices


Home Index