Nuprl Lemma : scalar-triple-product-as-det
∀[r:CRng]. ∀[a,b,c:ℕ3 ⟶ |r|].  (|a,b,c| = |λi.[a; b; c][i]| ∈ |r|)
Proof
Definitions occuring in Statement : 
scalar-triple-product: |a,b,c|, 
matrix-det: |M|, 
select: L[n], 
cons: [a / b], 
nil: [], 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T, 
crng: CRng, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
matrix: Matrix(n;m;r), 
crng: CRng, 
rng: Rng, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
nat: ℕ, 
less_than': less_than'(a;b), 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
scalar-triple-product: |a,b,c|, 
cross-product: (a x b), 
scalar-product: (a . b), 
determinant: determinant(n;r), 
lt_int: i <z j, 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i], 
add_grp_of_rng: r↓+gp, 
grp_op: *, 
pi2: snd(t), 
pi1: fst(t), 
grp_id: e, 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
btrue: tt, 
select: L[n], 
cons: [a / b], 
matrix-minor: matrix-minor(i;j;m), 
matrix-ap: M[i,j], 
isEven: isEven(n), 
modulus: a mod n, 
remainder: n rem m, 
absval: |i|, 
eq_int: (i =z j), 
infix_ap: x f y, 
uiff: uiff(P;Q), 
ringeq_int_terms: t1 ≡ t2
Lemmas referenced : 
select_wf, 
int_seg_wf, 
rng_car_wf, 
cons_wf, 
nil_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
scalar-triple-product_wf, 
matrix-det-is-determinant, 
istype-le, 
subtype_rel_self, 
iff_weakening_equal, 
primrec-unroll, 
primrec1_lemma, 
rng_times_over_minus, 
rng_plus_zero, 
rng_times_one, 
crng_wf, 
rng_plus_wf, 
rng_times_wf, 
istype-less_than, 
rng_minus_wf, 
rng_zero_wf, 
rng_one_wf, 
itermMultiply_wf, 
itermMinus_wf, 
ringeq-iff-rsub-is-0, 
ring_polynomial_null, 
int-to-ring_wf, 
ring_term_value_add_lemma, 
ring_term_value_mul_lemma, 
ring_term_value_var_lemma, 
ring_term_value_minus_lemma, 
ring_term_value_const_lemma, 
int-to-ring-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
closedConclusion, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
independent_isectElimination, 
productElimination, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
addEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
instantiate, 
universeEquality, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
imageMemberEquality, 
baseClosed, 
callbyvalueReduce, 
sqleReflexivity, 
axiomEquality, 
isectIsTypeImplies, 
functionIsType, 
productIsType
Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    (|a,b,c|  =  |\mlambda{}i.[a;  b;  c][i]|)
Date html generated:
2020_05_20-AM-09_04_05
Last ObjectModification:
2019_11_27-PM-02_54_26
Theory : matrices
Home
Index