Step
*
1
of Lemma
FOL-abstract_wf
1. sz : ℕ
2. ∀sz:ℕsz. ∀fmla:mFOL(). FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)) supposing mFOL_size(fmla) ≤ sz
3. name : Atom
4. f2 : ℤ List
5. 0 ≤ sz
⊢ FOL-abstract(name(f2)) ∈ AbstractFOFormula+(mFOL-freevars(name(f2)))
BY
{ (RepUR ``FOL-abstract mFOL-freevars`` 0 THEN DoSubsume THEN Auto) }
1
1. sz : ℕ
2. ∀sz:ℕsz. ∀fmla:mFOL(). FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)) supposing mFOL_size(fmla) ≤ sz
3. name : Atom
4. f2 : ℤ List
5. 0 ≤ sz
6. AbstractFOAtomic+(name;f2) = AbstractFOAtomic+(name;f2) ∈ AbstractFOFormula+(f2)
⊢ AbstractFOFormula+(f2) ⊆r AbstractFOFormula+(remove-repeats(IntDeq;f2))
Latex:
Latex:
1. sz : \mBbbN{}
2. \mforall{}sz:\mBbbN{}sz. \mforall{}fmla:mFOL().
FOL-abstract(fmla) \mmember{} AbstractFOFormula+(mFOL-freevars(fmla)) supposing mFOL\_size(fmla) \mleq{} sz
3. name : Atom
4. f2 : \mBbbZ{} List
5. 0 \mleq{} sz
\mvdash{} FOL-abstract(name(f2)) \mmember{} AbstractFOFormula+(mFOL-freevars(name(f2)))
By
Latex:
(RepUR ``FOL-abstract mFOL-freevars`` 0 THEN DoSubsume THEN Auto)
Home
Index