Nuprl Lemma : FOL-abstract_wf
∀[fmla:mFOL()]. (FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
Proof
Definitions occuring in Statement : 
FOL-abstract: FOL-abstract(fmla), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
AbstractFOFormula+: AbstractFOFormula+(vs), 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
mFOatomic: name(vars), 
mFOL_size: mFOL_size(p), 
spreadn: spread3, 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
mFOconnect: mFOconnect(knd;left;right), 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T, 
mFOquant: mFOquant(isall;var;body), 
FOL-abstract: FOL-abstract(fmla), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL_ind: mFOL_ind, 
AbstractFOFormula+: AbstractFOFormula+(vs), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
l_contains: A ⊆ B, 
l_all: (∀x∈L.P[x]), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
mFOL_size_wf, 
mFOL_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
mFOL-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
nat_wf, 
AbstractFOAtomic+_wf, 
FOStruct+_wf, 
FOAssignment_wf, 
remove-repeats_wf, 
int-deq_wf, 
subtype_rel_self, 
subtype_rel_dep_function, 
subtype_rel_FOAssignment, 
remove-repeats_property, 
select_wf, 
length_wf, 
select_member, 
FOConnective+_wf, 
mFOL-freevars_wf, 
FOQuantifier+_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
productElimination, 
unionElimination, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
promote_hyp, 
tokenEquality, 
equalityElimination, 
instantiate, 
cumulativity, 
atomEquality, 
imageElimination, 
addEquality, 
universeEquality, 
functionEquality
Latex:
\mforall{}[fmla:mFOL()].  (FOL-abstract(fmla)  \mmember{}  AbstractFOFormula+(mFOL-freevars(fmla)))
Date html generated:
2018_05_21-PM-10_23_04
Last ObjectModification:
2017_07_26-PM-06_38_17
Theory : minimal-first-order-logic
Home
Index