Step
*
1
of Lemma
mFOL-sequent-evidence_transitivity2
1. hyps : mFOL() List
2. [x] : mFOL()
3. [y] : mFOL()
4. mFOL-freevars(y) ⊆ mFOL-sequent-freevars(<hyps, x>)
5. mFOL-sequent-evidence(<hyps, y>)
6. mFOL-sequent-evidence(<[y / hyps], x>)
7. [Dom] : Type
8. [S] : FOStruct(Dom)
9. a : FOAssignment(mFOL-sequent-freevars(<hyps, x>),Dom)
10. Dom,S,a |= mFOL-sequent-abstract(<[y / hyps], x>)
⊢ Dom,S,a |= mFOL-sequent-abstract(<hyps, x>)
BY
{ (Assert Dom,S,a |= mFOL-sequent-abstract(<hyps, y>) BY
(Auto
THEN All (RepUR ``mFOL-sequent-evidence mFO-uniform-evidence``)
THEN BackThruSomeHyp
THEN (DoSubsume THEN Auto)
THEN SubtypeReasoning1
THEN Auto)) }
1
1. hyps : mFOL() List
2. [x] : mFOL()
3. [y] : mFOL()
4. mFOL-freevars(y) ⊆ mFOL-sequent-freevars(<hyps, x>)
5. mFOL-sequent-evidence(<hyps, y>)
6. mFOL-sequent-evidence(<[y / hyps], x>)
7. [Dom] : Type
8. [S] : FOStruct(Dom)
9. a : FOAssignment(mFOL-sequent-freevars(<hyps, x>),Dom)
10. Dom,S,a |= mFOL-sequent-abstract(<[y / hyps], x>)
11. Dom,S,a |= mFOL-sequent-abstract(<hyps, y>)
⊢ Dom,S,a |= mFOL-sequent-abstract(<hyps, x>)
Latex:
Latex:
1. hyps : mFOL() List
2. [x] : mFOL()
3. [y] : mFOL()
4. mFOL-freevars(y) \msubseteq{} mFOL-sequent-freevars(<hyps, x>)
5. mFOL-sequent-evidence(<hyps, y>)
6. mFOL-sequent-evidence(<[y / hyps], x>)
7. [Dom] : Type
8. [S] : FOStruct(Dom)
9. a : FOAssignment(mFOL-sequent-freevars(<hyps, x>),Dom)
10. Dom,S,a |= mFOL-sequent-abstract(<[y / hyps], x>)
\mvdash{} Dom,S,a |= mFOL-sequent-abstract(<hyps, x>)
By
Latex:
(Assert Dom,S,a |= mFOL-sequent-abstract(<hyps, y>) BY
(Auto
THEN All (RepUR ``mFOL-sequent-evidence mFO-uniform-evidence``)
THEN BackThruSomeHyp
THEN (DoSubsume THEN Auto)
THEN SubtypeReasoning1
THEN Auto))
Home
Index