Nuprl Lemma : mFOL-sequent-evidence_transitivity2
From uniform evidence that hyps ⇒ y and 
uniform evidence that (y ∧ hyps) ⇒ x
we construct uniform evidence that hyps ⇒ x.⋅
∀hyps:mFOL() List. ∀[x,y:mFOL()].  (mFOL-freevars(y) ⊆ mFOL-sequent-freevars(<hyps, x>) ⇒ mFOL-sequent-evidence(<hyps, \000Cy>) ⇒ mFOL-sequent-evidence(<[y / hyps], x>) ⇒ mFOL-sequent-evidence(<hyps, x>))
Proof
Definitions occuring in Statement : 
mFOL-sequent-evidence: mFOL-sequent-evidence(s), 
mFOL-sequent-freevars: mFOL-sequent-freevars(s), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
l_contains: A ⊆ B, 
cons: [a / b], 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
mFOL-sequent-evidence: mFOL-sequent-evidence(s), 
mFO-uniform-evidence: mFO-uniform-evidence(vs;fmla), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
pi1: fst(t), 
or: P ∨ Q, 
prop: ℙ, 
mFOL-sequent: mFOL-sequent(), 
mFOL-sequent-abstract: mFOL-sequent-abstract(s), 
FOSatWith: Dom,S,a |= fmla, 
mFOL-hyps-meaning: mFOL-hyps-meaning(Dom;S;a;hyps), 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
cand: A c∧ B
Lemmas referenced : 
subtype_rel_FOAssignment, 
mFOL-sequent-freevars_wf, 
cons_wf, 
mFOL_wf, 
mFOL-sequent-freevars-contained, 
mFOL-sequent-freevars-subset-1, 
cons_member, 
l_contains_wf, 
mFOL-freevars_wf, 
mFOL-sequent-freevars-subset-2, 
l_member_wf, 
FOAssignment_wf, 
FOStruct_wf, 
mFOL-sequent-evidence_wf, 
list_wf, 
mFOL-sequent-freevars-subset-4, 
map_cons_lemma, 
tupletype_cons_lemma, 
null-map, 
null_wf3, 
subtype_rel_list, 
top_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
tuple-type_wf, 
mFOL-hyps-meaning_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
applyEquality, 
introduction, 
extract_by_obid, 
because_Cache, 
independent_pairEquality, 
sqequalRule, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
unionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
intEquality, 
cumulativity, 
universeEquality, 
lambdaEquality, 
productEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityElimination, 
equalityTransitivity, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
baseClosed
Latex:
\mforall{}hyps:mFOL()  List
    \mforall{}[x,y:mFOL()].    (mFOL-freevars(y)  \msubseteq{}  mFOL-sequent-freevars(<hyps,  x>)  {}\mRightarrow{}  mFOL-sequent-evidence(<hyp\000Cs,  y>)  {}\mRightarrow{}  mFOL-sequent-evidence(<[y  /  hyps],  x>)  {}\mRightarrow{}  mFOL-sequent-evidence(<hyps,  x>))
Date html generated:
2018_05_21-PM-10_29_38
Last ObjectModification:
2017_07_26-PM-06_41_47
Theory : minimal-first-order-logic
Home
Index