Nuprl Lemma : mFOL-sequent-freevars-subset-1
∀hyps:mFOL() List. ∀concl:mFOL().  mFOL-freevars(concl) ⊆ mFOL-sequent-freevars(<hyps, concl>)
Proof
Definitions occuring in Statement : 
mFOL-sequent-freevars: mFOL-sequent-freevars(s), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
l_contains: A ⊆ B, 
list: T List, 
all: ∀x:A. B[x], 
pair: <a, b>, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
mFOL-sequent: mFOL-sequent(), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
pi2: snd(t), 
uimplies: b supposing a
Lemmas referenced : 
mFOL-sequent-freevars-contains-concl, 
list_wf, 
mFOL_wf, 
mFOL-freevars_wf, 
l_contains_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
independent_pairEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
productEquality, 
isectElimination, 
independent_functionElimination, 
intEquality, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}hyps:mFOL()  List.  \mforall{}concl:mFOL().    mFOL-freevars(concl)  \msubseteq{}  mFOL-sequent-freevars(<hyps,  concl>)
Date html generated:
2016_05_15-PM-10_26_23
Last ObjectModification:
2015_12_27-PM-06_26_52
Theory : minimal-first-order-logic
Home
Index