Nuprl Lemma : mFOL-sequent-freevars-subset-4
∀hyps:mFOL() List. ∀x,y:mFOL().  (mFOL-freevars(x) ⊆ mFOL-sequent-freevars(<hyps, y>) ⇒ mFOL-sequent-freevars(<hyps, x>\000C) ⊆ mFOL-sequent-freevars(<hyps, y>))
Proof
Definitions occuring in Statement : 
mFOL-sequent-freevars: mFOL-sequent-freevars(s), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
l_contains: A ⊆ B, 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
mFOL-sequent: mFOL-sequent(), 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
pi1: fst(t), 
prop: ℙ
Lemmas referenced : 
mFOL-sequent-freevars-contained, 
list_wf, 
mFOL_wf, 
mFOL-sequent-freevars_wf, 
mFOL-sequent-freevars-subset-2, 
l_member_wf, 
l_contains_wf, 
mFOL-freevars_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
independent_pairEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
productEquality, 
isectElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
intEquality
Latex:
\mforall{}hyps:mFOL()  List.  \mforall{}x,y:mFOL().    (mFOL-freevars(x)  \msubseteq{}  mFOL-sequent-freevars(<hyps,  y>)  {}\mRightarrow{}  mFOL-sequen\000Ct-freevars(<hyps,  x>)  \msubseteq{}  mFOL-sequent-freevars(<hyps,  y>))
Date html generated:
2016_05_15-PM-10_26_30
Last ObjectModification:
2015_12_27-PM-06_26_41
Theory : minimal-first-order-logic
Home
Index