Nuprl Lemma : mFOL-sequent-freevars-subset-2
∀hyps:mFOL() List. ∀concl,h:mFOL().  ((h ∈ hyps) ⇒ mFOL-freevars(h) ⊆ mFOL-sequent-freevars(<hyps, concl>))
Proof
Definitions occuring in Statement : 
mFOL-sequent-freevars: mFOL-sequent-freevars(s), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
l_contains: A ⊆ B, 
l_member: (x ∈ l), 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
int: ℤ
Definitions unfolded in proof : 
mFOL-sequent-freevars: mFOL-sequent-freevars(s), 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
top: Top, 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
or: P ∨ Q
Lemmas referenced : 
list_induction, 
mFOL_wf, 
all_wf, 
l_member_wf, 
l_contains_wf, 
mFOL-freevars_wf, 
reduce_wf, 
list_wf, 
l-union_wf, 
int-deq_wf, 
reduce_nil_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
reduce_cons_lemma, 
cons_wf, 
cons_member, 
union-contains, 
l_contains_transitivity, 
union-contains2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
lambdaEquality, 
functionEquality, 
hypothesisEquality, 
intEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
rename, 
productElimination, 
unionElimination, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}hyps:mFOL()  List.  \mforall{}concl,h:mFOL().
    ((h  \mmember{}  hyps)  {}\mRightarrow{}  mFOL-freevars(h)  \msubseteq{}  mFOL-sequent-freevars(<hyps,  concl>))
Date html generated:
2016_10_25-AM-11_45_32
Last ObjectModification:
2016_07_12-AM-07_45_05
Theory : minimal-first-order-logic
Home
Index