Nuprl Lemma : mFOL-sequent-freevars-subset-2
∀hyps:mFOL() List. ∀concl,h:mFOL(). ((h ∈ hyps)
⇒ mFOL-freevars(h) ⊆ mFOL-sequent-freevars(<hyps, concl>))
Proof
Definitions occuring in Statement :
mFOL-sequent-freevars: mFOL-sequent-freevars(s)
,
mFOL-freevars: mFOL-freevars(fmla)
,
mFOL: mFOL()
,
l_contains: A ⊆ B
,
l_member: (x ∈ l)
,
list: T List
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
pair: <a, b>
,
int: ℤ
Definitions unfolded in proof :
mFOL-sequent-freevars: mFOL-sequent-freevars(s)
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
so_apply: x[s]
,
top: Top
,
uimplies: b supposing a
,
not: ¬A
,
false: False
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
or: P ∨ Q
Lemmas referenced :
list_induction,
mFOL_wf,
all_wf,
l_member_wf,
l_contains_wf,
mFOL-freevars_wf,
reduce_wf,
list_wf,
l-union_wf,
int-deq_wf,
reduce_nil_lemma,
null_nil_lemma,
btrue_wf,
member-implies-null-eq-bfalse,
nil_wf,
btrue_neq_bfalse,
reduce_cons_lemma,
cons_wf,
cons_member,
union-contains,
l_contains_transitivity,
union-contains2
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesis,
lambdaEquality,
functionEquality,
hypothesisEquality,
intEquality,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
because_Cache,
rename,
productElimination,
unionElimination,
hyp_replacement,
Error :applyLambdaEquality
Latex:
\mforall{}hyps:mFOL() List. \mforall{}concl,h:mFOL().
((h \mmember{} hyps) {}\mRightarrow{} mFOL-freevars(h) \msubseteq{} mFOL-sequent-freevars(<hyps, concl>))
Date html generated:
2016_10_25-AM-11_45_32
Last ObjectModification:
2016_07_12-AM-07_45_05
Theory : minimal-first-order-logic
Home
Index