Nuprl Lemma : union-contains

[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List.  as ⊆ as ⋃ bs


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs l_contains: A ⊆ B list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_contains: A ⊆ B member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q or: P ∨ Q
Lemmas referenced :  l_all_iff l_member_wf l-union_wf member-union list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality setElimination rename hypothesis setEquality productElimination independent_functionElimination because_Cache inlFormation universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.    as  \msubseteq{}  as  \mcup{}  bs



Date html generated: 2019_06_20-PM-01_55_02
Last ObjectModification: 2018_08_24-PM-11_26_43

Theory : decidable!equality


Home Index