Nuprl Lemma : union-contains2
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List.  bs ⊆ as ⋃ bs
Proof
Definitions occuring in Statement : 
l-union: as ⋃ bs, 
l_contains: A ⊆ B, 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
l_contains: A ⊆ B, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
guard: {T}, 
or: P ∨ Q
Lemmas referenced : 
l_all_iff, 
l_member_wf, 
l-union_wf, 
member-union, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
inrFormation, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.    bs  \msubseteq{}  as  \mcup{}  bs
Date html generated:
2019_06_20-PM-01_55_04
Last ObjectModification:
2018_08_24-PM-11_26_42
Theory : decidable!equality
Home
Index