Step
*
of Lemma
coerce-fetch'-commutes
∀[Val,S:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[prog:Val ⟶ Val ⟶ (A-map S)].
∀j,k:ℕn.
((A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) k))
(λval@k.(A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) j))
(λval@j.(prog val@k val@j)))))
= (A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) j))
(λval@j.(A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) k))
(λval@k.(prog val@k val@j)))))
∈ (A-map S))
BY
{ (Auto THEN ExposeArrayOps 4 THEN ComputeArrayOps 0) }
1
1. Val : Type
2. S : Type
3. n : ℕ
4. Arr : Type
5. idx : ℕn ⟶ Arr ⟶ Val
6. upd : ℕn ⟶ Val ⟶ Arr ⟶ Arr
7. newarray : Val ⟶ Arr
8. A5 : ∀[i:ℕn]. ∀[v:Val]. ((idx i (newarray v)) = v ∈ Val)
9. A6 : ∀[i,j:ℕn]. ∀[x:Arr]. ∀[v:Val]. ((idx i (upd j v x)) = if (i =z j) then v else idx i x fi ∈ Val)
10. prog : Val ⟶ Val ⟶ (A-map S)
11. j : ℕn
12. k : ℕn
⊢ (λA.(prog (idx k A) (idx j A) A)) = (λA.(prog (idx k A) (idx j A) A)) ∈ (Arr ⟶ (S × Arr))
Latex:
Latex:
\mforall{}[Val,S:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[AType:array\{i:l\}(Val;n)]. \mforall{}[prog:Val {}\mrightarrow{} Val {}\mrightarrow{} (A-map S)].
\mforall{}j,k:\mBbbN{}n.
((A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) k))
(\mlambda{}val@k.(A-bind(array-model(AType))
(A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) j))
(\mlambda{}val@j.(prog val@k val@j)))))
= (A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) j))
(\mlambda{}val@j.(A-bind(array-model(AType))
(A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) k))
(\mlambda{}val@k.(prog val@k val@j))))))
By
Latex:
(Auto THEN ExposeArrayOps 4 THEN ComputeArrayOps 0)
Home
Index