Nuprl Lemma : coerce-fetch'-commutes

[Val,S:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[prog:Val ⟶ Val ⟶ (A-map S)].
  ∀j,k:ℕn.
    ((A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) k)) 
      val@k.(A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) j)) 
               val@j.(prog val@k val@j)))))
    (A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) j)) 
       val@j.(A-bind(array-model(AType)) (A-coerce(array-model(AType)) (A-fetch'(array-model(AType)) k)) 
                val@k.(prog val@k val@j)))))
    ∈ (A-map S))


Proof




Definitions occuring in Statement :  A-coerce: A-coerce(AModel) A-fetch': A-fetch'(AModel) A-bind: A-bind(AModel) A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] array: array{i:l}(Val;n) array-model: array-model(AType) A-fetch': A-fetch'(AModel) A-coerce: A-coerce(AModel) A-bind: A-bind(AModel) A-map: A-map pi2: snd(t) pi1: fst(t) idx: idx(AType) array-monad: array-monad(AType) M-bind: M-bind(Mnd) M-map: M-map(mnd) let: let Arr: Arr(AType) mk_monad: mk_monad(M;return;bind) nat: top: Top
Lemmas referenced :  int_seg_wf istype-universe A-map_wf array_wf nat_wf istype-void top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution productElimination thin sqequalRule hypothesis inhabitedIsType hypothesisEquality universeIsType extract_by_obid isectElimination natural_numberEquality setElimination rename lambdaEquality_alt dependent_functionElimination axiomEquality functionIsTypeImplies functionIsType applyEquality isect_memberEquality_alt because_Cache universeEquality functionExtensionality voidElimination functionExtensionality_alt

Latex:
\mforall{}[Val,S:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[prog:Val  {}\mrightarrow{}  Val  {}\mrightarrow{}  (A-map  S)].
    \mforall{}j,k:\mBbbN{}n.
        ((A-bind(array-model(AType))  (A-coerce(array-model(AType))  (A-fetch'(array-model(AType))  k)) 
            (\mlambda{}val@k.(A-bind(array-model(AType)) 
                              (A-coerce(array-model(AType))  (A-fetch'(array-model(AType))  j)) 
                              (\mlambda{}val@j.(prog  val@k  val@j)))))
        =  (A-bind(array-model(AType))  (A-coerce(array-model(AType))  (A-fetch'(array-model(AType))  j)) 
              (\mlambda{}val@j.(A-bind(array-model(AType)) 
                                (A-coerce(array-model(AType))  (A-fetch'(array-model(AType))  k)) 
                                (\mlambda{}val@k.(prog  val@k  val@j))))))



Date html generated: 2019_10_15-AM-10_59_31
Last ObjectModification: 2018_10_11-PM-09_54_09

Theory : monads


Home Index