Nuprl Lemma : A-map_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. (A-map ∈ Type ⟶ Type)
Proof
Definitions occuring in Statement :
A-map: A-map
,
array-model: array-model(AType)
,
array: array{i:l}(Val;n)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
array-model: array-model(AType)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
A-map: A-map
,
pi2: snd(t)
,
pi1: fst(t)
Lemmas referenced :
M-map_wf,
array-monad_wf,
array_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[Val:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[AType:array\{i:l\}(Val;n)]. (A-map \mmember{} Type {}\mrightarrow{} Type)
Date html generated:
2016_05_15-PM-02_18_14
Last ObjectModification:
2015_12_27-AM-08_59_00
Theory : monads
Home
Index