Nuprl Lemma : M-map_wf

[Mnd:Monad]. (M-map(Mnd) ∈ Type ⟶ Type)


Proof




Definitions occuring in Statement :  M-map: M-map(mnd) monad: Monad uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T M-map: M-map(mnd) monad: Monad pi1: fst(t)
Lemmas referenced :  monad_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid

Latex:
\mforall{}[Mnd:Monad].  (M-map(Mnd)  \mmember{}  Type  {}\mrightarrow{}  Type)



Date html generated: 2016_05_15-PM-02_16_17
Last ObjectModification: 2015_12_27-AM-08_59_26

Theory : monads


Home Index