Nuprl Lemma : monad_wf

Monad ∈ 𝕌'


Proof




Definitions occuring in Statement :  monad: Monad member: t ∈ T universe: Type
Definitions unfolded in proof :  monad: Monad member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q so_apply: x[s] prop: uimplies: supposing a exists: x:A. B[x]
Lemmas referenced :  subtype_rel_universe1 uall_wf equal_wf istype-universe isect_subtype_rel_trivial subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep productEquality closedConclusion functionEquality universeEquality isectEquality cumulativity hypothesisEquality cut applyEquality hypothesis thin introduction extract_by_obid sqequalHypSubstitution because_Cache instantiate isectElimination lambdaEquality_alt lambdaFormation_alt equalityTransitivity equalitySymmetry inhabitedIsType functionIsType universeIsType dependent_functionElimination equalityIsType1 independent_functionElimination isectIsType independent_isectElimination dependent_pairFormation_alt

Latex:
Monad  \mmember{}  \mBbbU{}'



Date html generated: 2019_10_15-AM-10_59_19
Last ObjectModification: 2018_10_11-PM-06_39_53

Theory : monads


Home Index